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An estimated 500 million of the 
poorest people in sub-Saharan Af-
rica, Latin America, and Asia are 
exposed to mycotoxins at levels that 
substantially increase mortality and 
morbidity (Pitt et al., 2012). The prob-
lem is not newly recognized. Shortly 
after the discovery of aflatoxins, the 
impact on child health was brought 
into immediate focus. After the re-
porting of several deaths in children 
in Africa due to consumption of afla-
toxin-contaminated meal, a decision 
was made in 1966 by the FAO/WHO/
UNICEF Protein Advisory Group to 
set a limit of 30 ppb aflatoxin in pro-
tein supplements made from ground-
nuts (Anonymous, 1966). In con-
trast to the situation today, in 1966 
throughout most of Africa the propor-
tion of calories from maize was mod-
est, with a greater proportion coming 
from sorghum, millet, and cassava.

Executive summary

The International Agency for 
Research on Cancer (IARC) of 
the World Health Organization 
convened a Working Group Meet-
ing in Lyon from 30 June to 3 July 
2014. This IARC Working Group 
Report provides a systematic, in-
dependent review of the scien-
tific evidence base on the adverse 
health effects from aflatoxin and 
fumonisin exposure through con-
sumption of contaminated maize 
and groundnuts. An evaluation is 
provided of interventions, available 
on an individual and a community 
level, to reduce human exposure 
and disease. Therefore, this Re-
port provides an authoritative basis 
for action at an international level, 
enabling decision-makers to invest 
with confidence in effective strate-
gies to save lives. It also provides 
guidance on additional critical stud-

ies needed to yield further evidence 
of the merit of specific intervention 
approaches. 

The Working Group addressed 
current scientific knowledge in four 
key areas: the extent of exposures 
to aflatoxin and fumonisin; the ef-
fects on prenatal, infant, and child 
health; relevant mechanistic infor-
mation; and effective intervention 
strategies in low-income settings. 
In the past, the focus has largely 
been on the impact of aflatoxin 
on cancer risk. Considering sev-
eral recent studies, mainly in Af-
rica, this Report also considers 
the potentially far greater burden 
of growth faltering after weaning 
(child stunting).

Stunting in children results from 
chronic undernutrition, leading to 
adverse effects on survival, health, 
and development, entailing a large 
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global population burden; in 2012, an 
estimated 162 million children young-
er than 5 years worldwide were stunt-
ed. Poor-quality diets and high rates 
of infection, both in pregnancy and 
in the first years of life, result in poor 
child growth, but the relative contri-
butions to stunting are unknown. At 
the same time, provision of all of the 
established nutrition-specific inter-
ventions in the most affected regions 
would reduce the prevalence of 
stunting by only about 20% (Bhutta et 
al., 2013), illustrating the large knowl-
edge gap in how to prevent stunting, 
including the potential impact of ex-
posure to mycotoxins.

This Report concludes that surveil-
lance data on exposure to aflatoxins 
are generally lacking outside the de-
veloped countries. However, avail-
able data from measurements of con-
taminated crops and through the use 
of exposure biomarkers in exposed 
populations demonstrate that myco-
toxin exposures can be high through-
out Africa, as well as in Latin America 
and parts of Asia. More recently, 
among maize-consuming populations 
in these regions, the high concurrent 
exposure to aflatoxins and fumonisins 
has been documented.

Notwithstanding the challenges, 
future mycotoxin monitoring pro-
grammes should be prioritized. As-
sessment of possible implementation 
within existing surveillance systems 
should be considered. In the short 
term, data from individual studies of 
sufficient quality should be added 
to the Global Environment Monitor-
ing System (GEMS)/Food Contami-
nation Database. Finally, a rapid 
screening approach aimed at the 
field/subsistence-farming level that 

is inexpensive and user-friendly and 
has a wide dynamic range should 
be developed. This could support a 
rapid alert system that informs re-
sponses and appropriate actions for 
food safety.

Aflatoxins are a cause of human 
liver cancer and, in high doses, have 
caused deaths from aflatoxicosis. 
More recently, significant negative ef-
fects of aflatoxin on child growth have 
been reported, as well as immune 
modulation. These observations are 
consistent with impaired fetal devel-
opment and immune system and 
gut function in animal models. Taken 
together, the few well-documented 
population-based studies and the 
mechanistic data in relevant animal 
models suggest that mycotoxin ex-
posure contributes to stunting, inde-
pendent of and with other risk factors. 
Further longitudinal studies of my-
cotoxin exposure and child stunting, 
including studies of the underlying 
mechanisms, merit investment.

The Working Group assessed the 
question of effective interventions 
in low-income countries using stud-
ies where there was reliable direct 
or indirect evidence of improvement 
of health, including reduced myco-
toxin biomarker levels. Using widely 
accepted criteria for evaluating evi-
dence about public health interven-
tions, some 15 interventions were 
placed into one of four categories: (1) 
sufficient evidence for implementa-
tion, (2) needs more field evaluation, 
(3) needs formative research, and (4) 
no evidence or ineffective. Recom-
mendations on how to approach the 
necessary further investigation and 
potential scale-up were also consid-
ered.

Four of the interventions were 
judged to be ready for implemen-
tation. The intervention for which 
the strongest evidence of improve-
ment of health exists, but which is 
also the most difficult to achieve, 
was to increase dietary diversity. 
Other strategies deemed ready for 
implementation were sorting of the 
crop; a package of post-harvest 
measures, including improved 
storage; and, in Latin America for 
maize, optimized nixtamalization. 
Several interventions were consid-
ered that might be used in emer-
gency situations of extremely high 
contamination (e.g. chemoprotec-
tants, agents that can be put into 
the diet to ameliorate the effects of 
aflatoxin once ingested).

As currently envisaged, the rec-
ommendations would be relevant 
for investment of public, nongov-
ernmental organization, and pri-
vate funds at the scale of the sub-
sistence farmer, the smallholder, 
and through to a more advanced 
value chain.
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chapter 1.  

Human exposure to 
 aflatoxins and fumonisins

Data on the prevalence of myco-
toxins in staple foods are essential 
for all applied research into their 
impact on health and on effective  
mitigation. Country- or region-
specific knowledge enables the 
identification of susceptible edible 
crops that are responsible for toxin 
exposure in specific populations. 
Prevalence data can indicate how 
effective maximum levels have been 
in influencing food safety, while 
acknowledging that their enforce-
ment could have food security im-
plications. Monitoring of prevalence 
also provides information on how 
various implemented strategies to 
reduce contamination or exposure 
levels directly affect toxin levels.

Ideally, exposure assessment, as 
one component of risk assessment, 
integrates mycotoxin levels with 
food consumption patterns and thus 
provides, via risk characterization, a 

clear picture of the extent to which 
mycotoxins compromise food safety 
and health, at either an individual or 
a population level. However, this is 
generally not achieved in develop-
ing countries, primarily due to a lack 
of country-specific data, resources, 
and analytical capacity.

Exposure biomarkers, such as 
serum aflatoxin–albumin adducts 
(AF–alb) or urinary fumonisin B1 
(UFB1), offer a more integrated es-
timate of exposure from all sources 
for either aflatoxin or fumonisin, and 
offer potentially more reliable expo-
sure estimates. Measurement of ex-
posure, either by measures of food 
consumption combined with con-
tamination levels or by using bio-
markers of exposure, can be used 
to identify the main dietary contribu-
tors to exposure, detect areas with 
unacceptable exposures, assess 
health impacts of mycotoxins and 

their role in disease development, 
and determine the efficacy of in-
tervention strategies. The recent 
development of multitoxin analytical 
methods, whether applied to food or 
to biological samples as biomark-
ers, has raised awareness of the 
concurrent exposure to aflatoxin 
and fumonisin as well as sometimes 
to other, unanticipated mycotoxins.

Exposure to aflatoxins

Aflatoxins are mycotoxins found 
in four main forms: aflatoxin B1 
(AFB1), B2 (AFB2), G1 (AFG1), and 
G2 (AFG2). Aflatoxins occur on a 
wide range of crops, including the 
major staple cereals (e.g. maize), 
edible nuts and legumes, and their 
products. In general, AFB1 occurs 
at the highest levels and is the most 
toxic. The main fungal producers 
of aflatoxins are Aspergillus flavus, 
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which produces AFB1 and AFB2, 
and Aspergillus parasiticus, which 
produces all four forms. Contamina-
tion can occur before or after harvest 
or both.

Aflatoxin contamination levels 
can vary widely, from products that 
meet the strict maximum levels 
set by the European Commission 
(2 µg/kg for AFB1; 4 µg/kg for total 
aflatoxins [sum of AFB1, AFB2, 
AFG1, and AFG2] for cereals and 
nuts for direct human consumption) 
(European Commission, 2010) 
to products with levels that can 
pose a risk of acute aflatoxicosis. 
For example, determination of 
total aflatoxins in a rural market 
survey in four districts during an 
acute outbreak in Kenya, in 2004, 
showed a range of total aflatoxins of 
1–46 400 µg/kg, with 7% of samples 
above 1000 µg/kg (Lewis et al., 
2005). In 2003, data available from 
African countries were summarized 
by Shephard (2003). More recent 
data, including summaries of global 
occurrence in samples submitted 
for analysis, have been presented 
by Rodrigues et al. (2011) and 
Schatzmayr and Streit (2013). 
Recent African data have also been 
provided by Gnonlonfin et al. (2013). 
Examples from this literature include 
groundnut cake from Nigeria (range, 
20–455  μg/kg);  raw  groundnut 
from Kenya (non-detectable to 
7525  μg/kg)  and  Botswana  (12–
329  μg/kg);  and maize  from  Benin  
(2–2500 μg/kg), Ghana (20–355 μg/ 
kg),  and  Zambia  (1–109  μg/kg). 
Other aflatoxin-contaminated food 
sources reported in various African 
countries include cassava, tiger 
nuts, cowpeas, sorghum, okra, 
and hot peppers, although due to 
consumption patterns, maize and 
groundnuts dominate in terms of 
level of exposure.

Aflatoxin M1 (AFM1) is a toxic 
metabolite of AFB1 and a possible 
human carcinogen (IARC, 2012).  

This compound can be detected in 
the urine and milk of exposed ani-
mals, including humans. Data on 
the carryover of AFM1 to breast milk 
are limited, but the carryover has 
been estimated at 0.1–0.4% (Zarba 
et al., 1992), and exposure of in-
fants to AFM1 from human breast 
milk has been reported in devel-
oping countries (Shephard, 2004; 
Turner, 2013; Magoha et al., 2014). 
In addition, AFM1 from milk of live-
stock consuming AFB1-contami-
nated feed is a further source of 
exposure. The 56th meeting of the 
Joint FAO/WHO Expert Committee 
on Food Additives (JECFA) com-
piled data on AFM1 levels found 
in commercial raw and processed 
dairy milk (Henry et al., 2001). 
However, few data were available 
from Africa, and those reported are 
unlikely to reflect typical village- or 
subsistence farm-level exposures. 
Further study is needed to better 
understand the consequences of 
AFM1 ingestion from breast milk 
and/or from the milk of livestock in 
Africa.

Global intake estimates for af-
latoxin (ng/kg body weight [bw]/
day) have been reported based 
on estimates of typical maize 
and nut consumption, con-
tamination levels, and body 
weight (Liu and Wu, 2010). For 
Africa, estimates were made for 
the Democratic Republic of the 
Congo (range, 0–27), Ethiopia (1–
36), The Gambia (4–115), Kenya 
(4–133), Mozambique (39–180), 
Nigeria (139–227), South Africa 
(0–17), the United Republic of Tan-
zania (0–50), and Zimbabwe (18–
43). Similarly high intakes were 
reported for China and countries 
in South-East Asia, compared with 
western Europe and North Amer-
ica at 0–1 ng/kg bw/day (Turner 
et al., 2012; Schleicher et al., 
2013). These data indicate a much 
higher burden of exposure in low-

income regions. However, it is im-
portant to note that these estimates 
are based on very limited data- 
sets, particularly in those regions at 
greatest risk of high exposures.  

Exposure to fumonisins

Fumonisins, which are produced 
mainly by Fusarium verticillioides 
(Sacc.) Nirenberg and F. proliferatum 
(Matsush.) Nirenberg, are common 
contaminants of maize and maize-
based products. Fumonisin B1 (FB1) 
is the most abundant (generally 
~70% of the total fumonisin contam-
ination), and it normally co-occurs 
with lesser amounts of fumonisin B2 
(FB2) and B3 (FB3). Occurrence on 
sorghum has also been reported 
(Bulder et al., 2012). 

Fumonisins were evaluated by 
JECFA in 2001 and 2012 (Bolger 
et al., 2001; Bulder et al., 2012). As 
exposure is a product of both con-
tamination level and consumption, 
certain rural communities in de-
veloping countries can exceed the 
provisional maximum tolerable dai-
ly intake (PMTDI) of 2 μg/kg bw/day 
of fumonisin if their diet contains 
high amounts of maize (Burger et 
al., 2010).

Fumonisin intake estimates (µg/
kg bw/day) in several regions of 
Africa were recently reviewed (Wild 
and Gong, 2010), including Burki-
na Faso (0–2); Bizana (1–19), Cen-
tane (2–36), Transkei (4), and Kwa-
Zulu-Natal (0), South Africa; and 
Bomet, Kenya (< 0.1). Intakes of 
0.2–26 µg/kg bw/day in Tanzanian 
children were reported (Kimanya 
et al., 2014).

In Latin America, estimates of 
fumonisin intake in Guatemala were 
reported to be 3.5 µg/kg bw/day 
(urban) and 15.5 µg/kg bw/day (rural) 
(Wild and Gong, 2010), and more 
recently a range of 0.20–23 µg/ 
kg bw/day was reported (Torres et 
al., 2014).
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Biomarkers for aflatoxins
and fumonisins

Food contamination and food intake 
can vary greatly within rural subsis-
tence farm settings and between vil-
lages and individuals. Assessments 
of both of these parameters present 
analytical and measurement diffi-
culties. In addition, there is interin-
dividual variation in toxicokinetics 
and toxicodynamics related to toxin 
ingestion. For these reasons, con-
siderable effort has been given to 
developing biomarkers for aflatoxins 
and fumonisins (Turner et al., 2012).

For AFB1, the peripheral blood 
AF–alb biomarker has been validat-
ed for moderate- to long-term expo-
sure (several months), whereas the 
urinary biomarkers, aflatoxin–N7-
guanine and AFM1, reflect shorter 
exposures. The application of these 
biomarkers has helped establish 
the link between aflatoxin exposure 
and the development of liver cancer 
(Kensler et al., 2011; IARC, 2012) 
and has allowed the efficacy of in-
tervention studies to be demonstrat-
ed (Turner et al., 2005).

Validated aflatoxin biomarker 
data from sub-Saharan Africa show 
that the ranges of exposures are 
likely to vary greatly in many re-
gions and within and across closely 
located villages and agro-ecolog-
ical zones, as well as seasonally 
and annually (Turner et al., 2012; 
Turner, 2013). The biomarker data 
further highlight the early-life bur-
den of exposure, including in utero 
and during early infancy. Exposures 
in West African studies involve both 
maize and groundnuts as the pri-
mary sources of intake of aflatox-
ins. Typical biomarker levels in chil-
dren younger than 5 years in Benin, 
The Gambia, and Togo range up 
to 1000 pg aflatoxin–lysine/mg al-
bumin (Turner, 2013). By compari-
son, levels of AF–alb reported from 
the recent United States National 

Health and Nutrition Examination 
Survey (NHANES) were almost all 
(99%) below the limit of detection 
(LOD), and the geometric mean of 
the positives was only 0.8 pg/mg 
(Schleicher et al., 2013).

AF–alb has also been used in 
various studies to assess associa-
tions between aflatoxin exposure 
and infant and early childhood 
growth faltering (Turner, 2013). 
Typically there is greater confi-
dence in the long-term markers 
of aflatoxin exposure to assess 
health outcomes, as they provide 
an integrated measure over several 
months. Several putative biomark-
ers for fumonisin exposure have 
been investigated. These include 
sphingoid bases in plasma and 
urine and FB1 in hair, nails, serum, 
urine, and faeces (Shephard et al., 
2007); however, none of these have 
been validated in human studies. 
UFB1 has been measured in hu-
man samples in regions with known 
high exposure to dietary fumonisins 
(Gong et al., 2008a; Xu et al., 2010; 
van der Westhuizen et al., 2011; Ri-
ley et al., 2012; Torres et al., 2014). 
In general, statistically significant 
relationships between UFB1 and ei-
ther estimated or measured FB1 in-
takes were reported; however, the 
data indicate that the urinary mea-
sure was only moderately reflective 
of the level of intake.

Co-occurrence of aflatoxins 
and fumonisins

The co-occurrence of aflatoxins and 
fumonisins has been widely docu-
mented by both biomarker studies 
and food analyses. In the United 
Republic of Tanzania, AF–alb and 
UFB1 were assessed in young 
children (Shirima et al., 2013). The 
prevalence of detection of both of 
the mycotoxins was high, and 82% 
of the children were positive for 
both. Also, a modest but statisti-

cally significant correlation was ob-
served between the concentrations 
of these biomarkers (r = 0.375, 
P < 0.001) (Shirima et al., 2013). 
Urinary aflatoxin and fumonisins 
were observed less frequently in 
samples from two major cities, 
Yaoundé and Bamenda, in Cam-
eroon (Abia et al., 2013) and from 
rural regions of Nigeria (Ezekiel et 
al., 2014), although co-exposures 
did occur. Differences in the sen-
sitivities of the analytical methods 
between these studies limit direct 
comparison. A separate study from 
Cameroon, looking at urinary my-
cotoxin markers in young children, 
also reported aflatoxin and fumoni-
sin exposure (Njumbe Ediage et al., 
2013). These data were comple-
mented by a survey across multiple 
agro-ecological zones in Camer-
oon, in which maize, groundnuts, 
and cassava were found to be con-
taminated with multiple mycotoxins 
(fumonisins were found in 74% of 
the maize samples and aflatoxins 
in 22% of the maize, 29% of the 
groundnuts, and 25% of the cas-
sava samples) (Ediage et al., 2014). 
In a study by Probst et al. (2014), a 
total of 339 maize samples from 18 
countries in Africa were assessed 
for aflatoxin and fumonisin contam-
ination. Aflatoxins were detected 
(LOD, 1 µg/kg) in 47% of the sam-
ples, with 7% exceeding 20 µg/kg 
and 6% exceeding 100 µg/kg (the 
maximum level was 1409 µg/kg). 
Fumonisins were detected (LOD, 
500 µg/kg) in 81% of the samples, 
with 7% exceeding 5000 µg/kg and 
3% exceeding 100 000 µg/kg. Afla-
toxin and fumonisin co-contamina-
tion occurred in 35% of the samples. 
Concentrations of co-contaminants 
varied by region, but for the Coast 
Province in Kenya, for example, 
50% of samples contained high 
levels of both aflatoxins (mean, 
97 µg/kg) and fumonisins (mean, 
32 000 µg/kg) (Probst et al., 2014).  
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  In Latin America, co-exposures 
to aflatoxins and fumonisins have 
also been documented. Maize from  
22 districts in Guatemala was ana-
lysed; 36% of 572 samples tested 
positive for aflatoxins (mean, 63 µg/
kg; range of positives, 5–2655 µg/
kg), and 99% of 640 samples test-
ed positive for fumonisins (mean, 
1800 µg/kg; range of positives, 10–
17 000 µg/kg) (Torres et al., 2015).

Analytical limitations

One limitation with urinary biomark-
er approaches is the volumes of 
urine required. Even though techno-
logical development of highly sen-
sitive liquid chromatography-mass 
spectrometry (LC-MS) techniques 
will help support biomonitoring, the 
approach itself may be limited by 
instrumentation costs, restricting 
analysis to specialist laboratories. 
With the development of multitoxin 
analytical techniques based on  
LC-MS/MS, multibiomarker meth-
ods have been developed for urinary 
biomeasures for toxins, including 
FB1 and AFM1 (Solfrizzo et al., 2011; 
Warth et al., 2012), as extensions 
of multimycotoxin methods for food 
analysis. These methods have been 
applied in Africa to evaluate expo-
sure (Abia et al., 2013; Shephard 
et al., 2013; Ezekiel et al., 2014). To 
date, there have been limited efforts 
to compare multimycotoxin methods 
from different laboratories. Thus, 
currently there is greater confidence 
in the data from single measures, 
and for increased utility these inter-
laboratory comparison studies are 
urgently needed. An additional con-
cern is that some of the multimyco-
toxin methods, especially for foods, 
may be measuring contaminants of 
limited relevance to human health. 
This could result in additional costs 
(e.g. of measuring > 60 metabolites) 
while potentially leading to inaccu-
rate measurements.

Key scientific gaps

The problem of mycotoxin exposure 
is most acute in developing coun-
tries, which lack resources and ana-
lytical capacity for analyses. Conse-
quently, few data are reported from 
developing countries and those 
available are usually based on only 
a limited number of samples of un-
certain quality. As a result, there is 
a widening gap between the qual-
ity and quantity of prevalence data 
generated by laboratories in devel-
oped countries compared with de-
veloping countries. There is thus a 
need in the developing countries to 
have sampling and analytical tools 
available that are fit for specific pur-
poses, such as:
• A rapid screening method aimed 

at the field/subsistence farm lev-
el that is inexpensive and user-
friendly and has a wide dynamic 
analytical range. This could addi-
tionally help support a rapid alert 
system that informs responses and 
appropriate actions for food safety.

• A comprehensive regional or coun-
try-wide monitoring programme, 
involving the establishment of 
a reference laboratory within a 
country/region. The monitoring 
programme should be developed 
within existing surveillance sys-
tems and be expanded over time. 
For example, many regions have 
national health and nutrition pro-
grammes where archived biospec-
imens could be requested. Future 
national surveys of this nature may 
be asked to collect larger volumes 
of biospecimens (e.g. to support 
urinary xenobiotic surveillance). 
De novo monitoring activities could 
include both food measures and 
biomarkers.

For a successful food monitoring 
programme, it is essential to have 
effective sampling plans in place. 
While it is recognized that design-
ing effective sampling plans for 

mycotoxin detection in food com-
modities is a complex task, there is 
a tool available to support countries 
in this regard: the Food and Agri-
culture Organization of the United 
Nations (FAO) Mycotoxin Sam-
pling Tool (http://www.fstools.org/
mycotoxins/). Further, there is a 
World Health Organization (WHO) 
programme (Global Environment 
Monitoring System – Food Contam-
ination Monitoring and Assessment 
Programme [GEMS/Food]) that 
collects global food contamination 
data and reports food consumption 
data. Average per capita food con-
sumption data are reported based 
on the FAO Food Balance Sheet 
data. It is important to note that the 
database provides average con-
sumption levels but will not capture 
the food consumption pattern at the 
subsistence farm level. Another da-
tabase within GEMS/Food collects 
occurrence data for contamina-
tion levels, including aflatoxins and 
fumonisins in food products and 
crops. It would be useful to highlight 
the opportunity for researchers to 
add their studies to this database. 
However, acquiring data on con-
sumption and contamination levels 
in subsistence farmers will remain a 
significant hurdle.

Among monitoring options, an 
approach that might be implement-
ed is sampling at community maize 
milling facilities. For example, in 
some parts of East Africa farmers 
could bring maize to a local milling 
operation, where subsampling and 
aflatoxin and fumonisin analyses 
could be carried out using rapid 
test kits for field application. Rela-
tively large data collection activities 
may be possible in such settings, 
providing an improved surveillance, 
although this will capture only some 
of the prevalence data in some re-
gions and none in others. This also 
may, however, provide a target site 
for intervention.

http://www.fstools.org/mycotoxins
http://www.fstools.org/mycotoxins
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Measures of individual exposures 
are important for epidemiological in-
vestigations of disease causation 
and for demonstration of efficacy 
of intervention. The development of 
a reliable source of certified stan-
dards, especially for aflatoxin bio-
markers, would allow a substantial 
increase in biomarker-directed epi-
demiology research.

Therefore, the problem of insuf-
ficient data could also be addressed 
by the use of individual biomark-
ers of exposure. Aflatoxin biomark-
ers are well understood, but the 
most useful for long-term exposure 
studies, AF–alb, is currently mea-
sured in only a limited number of 
laboratories. It would be advanta-
geous if this analysis were more 
generally available, especially in 
countries where aflatoxin expo-

sure is known to be high. The lack 
of reagents such as aflatoxin– 
lysine and mono-adducted AF–alb 
is a major constraint and needs to be 
addressed. Enzyme-linked immuno-
sorbent assay (ELISA) approaches 
are typically less expensive, but an 
additional issue is a lack of commer-
cially available kits or antibodies. 
While LC-MS provides robust data, 
the analytical costs are prohibitive 
for most laboratories. Exposure of 
in fants in developing countries to 
AFM1 also needs to be monitored as 
these countries are prone to higher 
AFB1 exposures.

UFB1 has been measured by  
LC-MS in several world regions, and 
again a current concern is the cost of 
the analysis. While dose–response 
relationships were reported, the uri-
nary measure was not as strongly 

predictive of the level of intake com-
pared with relationships reported for 
aflatoxin biomarkers. For general 
biomonitoring this is not a major is-
sue; however, this is a concern when 
making assessments in relation to 
putative health effects and assess-
ing the efficacy of interventions. For 
the use of FB1 and AFM1, it was noted 
that neither of these predicts longer-
term exposures, and while serum 
AF–alb is used for this purpose in af-
latoxin biomonitoring and epidemiol-
ogy, there remains a need to develop 
a long-term exposure biomarker for 
fumonisin. An additional challenge 
is the need for higher-throughput 
analytical tools, which would benefit 
from a cooperative activity between 
experts in exposure assessment and 
researchers with subject matter ex-
pertise in mycotoxins.





Chapter 2. Child stunting in developing countries 7

chapter 2.  

Child stunting in 
developing countries

Stunting and wasting in children 
are measures reflecting states of 
chronic and acute undernutrition 
that have important adverse effects 
on survival, health, and develop-
ment. In impoverished settings, 
poor-quality diets and high rates of 
infection, both in pregnancy and in 
the first 2 years of life, lead to fe-
tal growth restriction (FGR) and 
poor child growth. This results in 
an estimated 26% of the world’s 
children younger than 5 years hav-
ing stunted stature, and 8% be-
ing much too thin for their height  
(i.e. wasted) (UNICEF-WHO-The 
World Bank, 2012). Proven inter-
ventions to prevent the FGR that 
contributes to stunting include mul-
tiple vitamin and mineral supple-
ments and provision of balanced 
energy/protein supplements to 
pregnant women, as well as control 
of maternal infections. After birth, 

the most effective intervention is the 
supply of foods with adequate nutri-
tional quality to complement breast-
feeding in the first 2 years of life.

The physical growth of children 
within a normative range has im-
portant implications both within 
that age span and into adulthood 
(Bhutta et al., 2013). Insufficient 
gains in length/height and weight 
from birth to age 5 years, resulting 
from childhood undernutrition, put 
the child at increased risk of mor-
bidity and mortality from infectious 
diseases as well as impaired mental 
development, reduced learning ca-
pacity in school, and lower earning 
potential as an adult, among other 
effects (Victora et al., 2008; Adair 
et al., 2013; Bhutta et al., 2013). 
As noted, childhood undernutri-
tion is usually defined by physical 
size. Measures of length/height and 
weight are most common, although 

there are others such as head cir-
cumference and mid-upper arm 
circumference that are commonly 
used in surveillance for severe 
acute malnutrition.

Length (recumbent, for age 
< 2 years) or height (standing, for 
age 2–4 years) or weight is com-
pared to an international growth 
standard (WHO Multicentre Growth 
Reference Study Group, 2006), 
and the result is most commonly 
expressed as a Z-score (standard 
deviation score). The Z-score is the 
observed value for length/height or 
weight minus the median value of 
the growth standard, with this result 
divided by the standard deviation of 
the growth standard. If the Z-score 
for length/height-for-age is below 
−2,  the child  is considered  to have 
inadequate linear growth or to be 
stunted. If the Z-score for weight-
for-age is below −2, the child is said 
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to be underweight. The weight and 
length/height measures can be used  
together to create an indicator of 
wasting: a child whose Z-score for 
weight-for-length/height is below −2 
is considered to be wasted.

Prevalence of child 
malnutrition

The latest UNICEF-WHO-The World 
Bank joint child malnutrition esti-
mates provide global and regional 
prevalences for stunting and wast-
ing based primarily on population-
based, nationally representative 
surveys, with modelling to make 
regional estimates (UNICEF-WHO-
The World Bank, 2012). The global 
prevalence of stunting in children 
younger than 5 years was estimated 
to be 26% (95% confidence interval 
[CI], 24–28%) for 2011, the most re-
cent data. The number of stunted 
children in that year was estimated 
to be 165 million. The prevalence of 
stunting has declined from 40% in 

1990, with an average annual rate 
of reduction of 2.1%. The preva-
lence of stunting varies substan-
tially by world region (Fig. 2.1), with 
the highest prevalence in Africa and 
South-Central Asia (which includes 
India). The decline in the preva-
lence of stunting has been greater 
for Asia and Latin America than 
for Africa, which is the only region 
that has had an increasing number 
of stunted children, due to the slow 
declines in the prevalence and the 
high fertility rate (Fig. 2.2) (UNI-
CEF-WHO-The World Bank, 2012; 
Bhutta et al., 2013).

In countries with an overall preva-
lence of stunting greater than 10%, 
there is a gap – in some cases very 
wide – between the high prevalence 
in the poorest 20% and the low prev-
alence in the least poor 20% of the 
population. This illustrates the rela-
tionship of stunting and other forms 
of undernutrition with poverty and 
the associated problems of food in-
security and environmental exposure 

to infectious agents and toxins. The 
global prevalence of moderate or 
severe wasting was estimated to be 
8.0% (95% CI, 6.8–9.3%) for 2011. 
Again, there is regional variation in 
the prevalence (Fig. 2.3), with the 
highest prevalence in South-Central 
Asia (14.8%; 95% CI, 11.1–19.4%), 
South-East Asia (9.7%; 95% CI, 
7.5–12.6%), and Africa (8.5%; 95% 
CI, 7.4–9.6%). The numbers of chil-
dren with wasting and severe wast-
ing were estimated to be 52 million 
and 19 million, respectively, for 
2011. Recent estimates indicate that 
nearly 2 million deaths in children 
worldwide can be attributed to FGR 
and stunting, or a third of all child 
deaths (UNICEF-WHO-The World 
Bank, 2012; Bhutta et al., 2013).

Risk factors for child 
malnutrition

Preventable causes of FGR in utero 
and reduced growth of the child dur-
ing the first 2 years of life include low 

Fig. 2.1. Latest country prevalence estimates for stunting among children younger than 5 years. Source: Reprinted 
from UNICEF-WHO-The World Bank (2012), p. 9, © 2012, with the permission of the publisher.
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Fig. 2.3. Latest country prevalence estimates for wasting among children younger than 5 years. Source: Reprinted 
from UNICEF-WHO-The World Bank (2012), p. 10, © 2012, with the permission of the publisher.

Fig. 2.2.  Trends  in  prevalence  and  numbers  of  children  with  stunted  growth  (height-for-age  Z-score  <  −2),  by 
selected United Nations regions and globally, 1990–2010, and projected to 2025 on the basis of United Nations 
prevalence estimates. Source: Reprinted from Black et al. (2013), © 2013, with permission from Elsevier. Data from 
UNICEF-WHO-The World Bank (2012).
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body mass index, small weight gain 
and micronutrient deficiencies dur-
ing pregnancy, and maternal infec-
tions (Bhutta et al., 2013; Christian et 
al., 2013). It has been estimated that 
27% of all births in low- and middle-
income countries have FGR, with the 
highest prevalence in Asia, especial-
ly South Asia (Bhutta et al., 2013; Lee 
et al., 2013). Nutritional status at birth 
is related to the risk of being stunted 
at age 2 years. Globally, it has been 
estimated that 20% of stunting can 
be attributed to FGR. In some coun-
tries the attributable fraction is even 
higher. In India, where nearly half of 
all births have FGR, the attributable 
fraction for stunting is more than a 
third (Christian et al., 2013).

Most of the growth faltering lead-
ing to stunting occurs between 
ages 3 months and 18–24 months  
(Victora et al., 2010), a period of vul-
nerability because often insufficient 
and poor-quality food is provided to 
the child. Exclusive breastfeeding is 
recommended for the first 6 months 
of life but is uncommonly practiced; 
globally, only about 30% of infants 
aged 1–5 months are exclusively 
breastfed (Bhutta et al., 2013). The 
early introduction of fluids will re-
duce the production and ingestion 
of breast milk and substitute foods 
of lesser nutritional quality that also 
have a high risk of microbial con-
tamination. In most of the affected 
regions, more than 60% of children 
aged 6–23 months are breast-
fed (Bhutta et al., 2013). However, 
the complementary foods that are 
introduced too often have inad-
equate nutrient density, calories, 
protein, essential fats, and micronu-
trients, and may contain infectious 
bacteria and/or toxins. Deficiency 
of the micronutrient zinc has been 
consistently associated with stunt-
ing, and increased linear growth in  
infants has been demonstrated with 
provision of daily zinc supplements 
(Bhutta et al., 2013).

High rates of diarrhoea and other 
infectious diseases also affect this 
age group, even with continued 
breastfeeding as complementary 
foods are introduced. In a pooled 
analysis of nine community-based 
studies in low-income countries, the 
odds of stunting at age 24 months 
increased multiplicatively with each 
episode of diarrhoea or day of di-
arrhoea before that age. The pro-
portion of stunting attributed to five 
previous episodes of diarrhoea was 
25% (95% CI, 8–38%) (Checkley et 
al., 2008). In addition to the clinical 
infections, frequent exposure to con-
taminated food and water and the 
household environment results in 
ingestion of microbes, causing sub-
clinical infections that damage the 
small intestine. It has been hypoth-
esized that environmental enteric 
dysfunction (EED) or environmental 
enteropathy, a condition character-
ized by structural abnormalities of 
the intestinal epithelium, altered bar-
rier integrity, mucosal inflammation, 
and reduced nutrient absorption, 
may contribute to growth faltering 
and stunting (Keusch et al., 2013). It 
has also been hypothesized that zinc 
deficiency may be involved in the 
pathogenesis of EED (Lindenmayer 
et al., 2014). As noted by Lunn 
(2000) and discussed later in this 
Report, there is a potential role for 
ingested mycotoxins to contribute 
to EED or to other mechanisms that 
lead to stunting.

Interventions against child 
malnutrition

Although breastfeeding, as recom-
mended for the first 2 years of life, is 
important for the babies’ health and 
dietary intake, the major interven-
tions to prevent stunting are related 
to the foods that are given in addition 
to breast milk from age 6–23 months 
(i.e. complementary diet). Educa-
tion about age-appropriate quantity 

and quality of diets and provision 
of safe food supplements contain-
ing adequate micronutrients have 
been shown to improve growth and 
reduce the prevalence of stunting. 
Full (90% coverage) implementa-
tion of these interventions would re-
duce stunting by at least 20% in the 
34 countries that include 90% of the 
world’s stunted children (Fig. 2.4). 
These interventions would also be 
useful to prevent wasting (Bhutta et 
al., 2013). In stable non-emergency 
situations, wasting usually coexists 
with stunting after age 6–9 months. 
However, severe acute malnutrition 
(i.e. severe wasting) can occur more 
abruptly even in a previously well-
nourished child due to food scarcity, 
such as in famine, natural disaster, 
or civil conflict. These are situations 
where targeted food distribution pro-
grammes are needed.

There is limited evidence that 
interventions in sectors other than 
health and nutrition may have a 
beneficial impact on stunting. These 
areas include efforts to improve ag-
ricultural productivity and improve-
ments in water, sanitation, and hy-
giene, because of their potential to 
reduce the rates of diarrhoea and 
possibly the occurrence of EED 
(Dangour et al., 2013; Spears, 2013). 
Food safety interventions would be 
expected to positively influence nu-
trition and growth in young children 
by eliminating infectious agents that 
cause diarrhoea through foodborne 
transmission and possibly through 
avoidance of exposure to chemicals 
and mycotoxins.

Key scientific gaps and 
research needs

Recent publications indicate that 
FGR is a more important contribu-
tor to neonatal and infant mortality 
(Katz et al., 2013) and to stunted 
linear growth (Christian et al., 
2013) than previously recognized. 
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This makes it imperative to look 
more closely at the causes of FGR 
and possible interventions to re-
duce it or ameliorate its negative 
effects. Maternal undernutrition and 
infection, as well as other possible 
determinants of FGR, need addi-
tional study, especially to identify 
feasible interventions to reduce its 
occurrence. If programmes intend 
to increase the provision of bal-
anced energy/protein supplements 
during pregnancy, there are ques-
tions about the composition of sup-
plements (preferably using locally 
available and safe foods) and their 
timing in pregnancy, how best to 
target the food supplements to vul-
nerable populations and undernour-
ished or food-insecure women, how 
to achieve sufficient consumption, 
and ultimately the cost–effective-
ness of alternative ways to deliver 
this intervention.

In spite of the known benefits of 
iron and folic acid supplementation 
in pregnancy, the current use of this 
intervention is low. Supplementation 

with multiple micronutrients in preg-
nancy, instead of only iron and 
folic acid, would provide added 
benefits at modest additional cost. 
If multiple micronutrients are to be 
provided to pregnant women or to 
children, further product develop-
ment research, linked with stud-
ies of the prevalence and extent of 
micronutrient deficiencies in various 
low-income populations, is needed. 
This will ensure that the composi-
tion is optimized to meet nutritional 
needs, reduce nutrient interactions, 
avoid side-effects, enhance accept-
ability, and reduce costs.

Most stunting of linear growth 
takes place in the first 2 years of 
life. The relative contributions to 
stunting of dietary insufficiency, 
infectious diseases or subclinical 
infections, and inflammation are un-
known and may vary, as does the 
prevalence of stunting, by setting in 
low- and middle-income countries. 
There is good evidence that promo-
tion of nutritious complementary 
foods or provision of food supple-

ments improves growth and reduces 
the occurrence of stunting; however, 
the effect size relative to the height 
deficit is small. Zinc supplements 
for children in the first 2 years of 
life also have a statistically signifi-
cant, but small, benefit in reducing 
stunting. The Lancet nutrition series 
estimated that the nutrition-specific 
interventions together, if scaled up 
to 90%, would reduce the preva-
lence of stunting by only about 20% 
(Bhutta et al., 2013), illustrating the 
large gap in our knowledge of how 
to prevent stunting. Additional stud-
ies of the determinants of stunted 
growth need to include the possible 
role of subclinical infections and ex-
posure to potentially harmful agents 
such as mycotoxins.

The first 2 years of life are a 
crucial period for both develop-
ment and growth, which need to 
be considered separately as well 
as jointly. Young children in impov-
erished households lack both the 
stimulation needed for cognitive and 
psychosocial development and the 

Fig. 2.4. Countries with the highest burden of malnutrition. These 34 countries account for 90% of the global burden 
of malnutrition. Source: Reprinted from Bhutta et al. (2013), © 2013, with permission from Elsevier.
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food and environmental conditions 
needed to promote physical growth 
and prevent illness.

In conclusion, stunting and wast-
ing are nutritional conditions that most 
commonly affect children in low- and 
middle-income countries and have 

serious consequences for survival, 
health, and development. Implemen-
tation of proven interventions to pre-
vent their occurrence and to provide 
treatment must be given greater pri-
ority. Parallel efforts should address 
the evidence gaps through better un-

derstanding of the behavioural and 
biological determinants of stunting 
and wasting, including the possible 
role of mycotoxins, and the effec-
tiveness of other nutrition-specific 
interventions and nutrition-sensitive 
approaches.
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chapter 3.  

Effects of aflatoxins on  
aflatoxicosis and liver cancer

While there has been a very ex-
tensive focus on the role of aflatoxin 
exposure in hepatocellular carci-
noma (HCC), over the years sev-
eral cases of acute aflatoxicosis in 
humans have been reported in re-
gions of some developing countries 
(Shank et al., 1971).

Acute aflatoxin poisoning

The clinical manifestations of afla-
toxicosis include vomiting, abdomi-
nal pain, pulmonary oedema, fatty 
infiltration, and necrosis of the liver. 
In the 1970s, there was an outbreak 
of putative aflatoxin poisoning in 
western India when heavily moulded 
maize was consumed. There were 
at least 97 fatalities, all of which oc-
curred in households where the con-
taminated maize was consumed. 
Histopathology of liver speci-
mens revealed extensive bile duct 

proliferation, a lesion often noted in 
experimental animals after acute af-
latoxin exposure (Krishnamachari et 
al., 1975; Bhat and Krishnamachari, 
1977). An outbreak of acute aflatox-
icosis in Kenya in 1981 was also as-
sociated with consumption of maize 
highly contaminated with aflatoxin 
(Ngindu et al., 1982). There were 
20 hospital admissions, with 60% 
mortality. In a more recent report 
(Lye et al., 1995), the consumption 
of aflatoxin-contaminated noodles 
resulted in acute hepatic encepha-
lopathy in children in Malaysia. Up 
to 3 mg of aflatoxin was suspected 
to be present in a single serving of 
contaminated noodles.

In April 2004, one of the largest 
documented aflatoxicosis outbreaks 
occurred in rural Kenya, resulting 
in 317 cases and 125 deaths. Af-
latoxin-contaminated home-grown 
maize was the major source of the 

outbreak. In a survey of 65 markets 
and 243 maize vendors, 350 maize 
products were collected from the 
most affected districts. Of these 
maize products, 55% had aflatox-
in levels greater than the Kenyan 
regulatory limit of 20 ppb, 35% had 
levels greater than 100 ppb, and 7% 
had levels greater than 1000 ppb. 
Makueni, the district with the most 
aflatoxicosis cases, had signifi-
cantly higher aflatoxin levels in 
maize from markets than did Thika, 
the study district with the fewest 
cases (geometric mean aflatoxin, 
52.91 ppb vs 7.52 ppb; P = 0.0004). 
Maize obtained from local farms in 
the affected area was significantly 
more likely to have aflatoxin levels 
greater than 20 ppb compared with 
maize bought from other regions of 
Kenya or other countries (odds ratio 
[OR], 2.71; 95% confidence interval 
[CI], 1.12–6.59). In addition to the 
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market survey for aflatoxin expo-
sure, this outbreak in 2004 marked 
the first time that levels of aflatox-
in–albumin adducts (AF–alb) inde-
pendently confirmed the exposure 
in individuals (CDC, 2004; Azziz-
Baumgartner et al., 2005; Lewis et 
al., 2005; Strosnider et al., 2006; 
Probst et al., 2007).

Hepatocellular carcinoma

For decades, it has been known that 
aflatoxin exposure causes liver can-
cer in humans and in several animal 
species. The International Agency 
for Research on Cancer (IARC) 
has evaluated the carcinogenicity 
of aflatoxins on several occasions, 
starting in 1972 with Volume 1 of the 
IARC Monographs on the evaluation 
of carcinogenic risks to humans. 
Since that time, many studies in 
humans and experimental animals 
have provided clarifying data, and 
naturally occurring mixtures of afla-
toxins are now classified as Group 
1, carcinogenic to humans (IARC, 
1993). Furthermore, as described 
below, concomitant exposure to af-
latoxin and hepatitis B virus (HBV) 
is common in developing countries 
and greatly increases HCC risk (Wu 
et al., 2013). Individuals who experi-
ence both exposures have a greater 
risk of developing HCC than those 
exposed to aflatoxin alone (Wogan 
et al., 2012).

HCC accounts for 5.6% of all re-
ported cancer cases and is the sixth 
most common cancer diagnosed 
worldwide (Ferlay et al., 2013). 
The global incidence of liver cancer 
varies enormously, and the burden 
of this nearly always fatal disease 
is much higher in less-developed 
countries of Asia and sub-Saharan 
Africa. Overall, there are more than 
780 000 new cases of liver cancer 
each year and more than 745 000 
deaths annually (Ferlay et al., 2013).  
In contrast to most cancers common 

in developed countries, where more 
than 90% of cases are diagnosed 
in people aged 45 years and older, 
in high-risk regions for liver can-
cer, onset begins in both men and 
women by age 20 years, peaking at 
age 40–49 years in men and age 
50–59 years in women (Parkin et 
al., 2005; Chen et al., 2006). The 
earlier onset of HCC may be attrib-
utable to exposures that are both 
substantial and persistent across 
the lifespan. Sex differences in liver 
cancer incidence have also been 
described; the worldwide annual 
age-standardized incidence rate 
is 15.3 per 100 000 among men 
and 5.4 per 100 000 among women 
(Ferlay et al., 2013). These epidemi-
ological findings are also consistent 
with experimental animal data for 
aflatoxin, in which male rats have 
been found to have an earlier on-
set of cancer compared with female 
rats (Wogan and Newberne, 1967).

For more than 50 years, the re-
lationship between aflatoxin expo-
sure and human liver cancer has 
been examined using ecological 
studies, cross-sectional surveys, 
case–control studies, and prospec-
tive cohort investigations in ex-
posed populations. Early studies in 
the Philippines demonstrated that 
an oxidative metabolite of aflatoxin 
could be detected in urine and thus 
had potential to serve as an inter-
nal dose marker (Campbell et al., 
1970). In later studies, Autrup et al. 
(1983, 1987) reported the presence 
of aflatoxin B1 (AFB1)–DNA adducts 
in human urine samples in Kenya. 
Subsequent work conducted in Chi-
na and The Gambia, West Africa, 
areas with high incidences of HCC, 
examined both the dietary intake of 
aflatoxin and the levels of urinary 
aflatoxin biomarkers (Groopman et 
al., 1992). Urinary AFB1–DNA ad-
duct and aflatoxin M1 (AFM1) levels 
showed a dose-dependent relation-
ship between aflatoxin intake and 

excretion. Gan et al. (1988) and 
Wild et al. (1992) also monitored 
levels of AF–alb in serum and ob-
served a highly significant associa-
tion between aflatoxin intake and 
adduct level.

Many published case–control 
studies have explored the relation-
ship between aflatoxin exposure 
and HCC. In an early case–con-
trol study, Bulatao-Jayme et al. 
(1982) compared the dietary intake 
of aflatoxin in cases of HCC in the 
Philippines with intake in age- and 
sex-matched controls. They found 
that the mean aflatoxin exposure 
per day in cases of HCC was 
4.5 times as high as that in the con-
trols; however, alcohol consump-
tion may have enhanced this effect. 
Van Rensburg et al. (1985) and 
Peers et al. (1976) used a similar 
design for studies in Mozambique 
and Swaziland, respectively. Again, 
the mean dietary aflatoxin intakes 
were positively correlated with HCC 
rates, and the data also suggested 
a dose-dependent increase in liver 
disease associated with increased 
aflatoxin intake.

In the Guangxi Zhuang Autono-
mous Region of China, Yeh and 
Shen (1986) and Yeh et al. (1989) 
examined the interaction between 
HBV infection and dietary aflatoxin 
exposure dichotomized for heavy 
and light levels of contamination. 
Individuals whose serum was posi-
tive for the HBV surface antigen 
(HBsAg) and who experienced 
heavy aflatoxin exposure had a 
10-fold higher incidence of HCC 
than did people living in areas with 
light aflatoxin contamination. Peo-
ple who were HBsAg-negative and 
who consumed diets heavily con-
taminated with aflatoxin had a rate 
of HCC comparable to that of the 
HBsAg-positive people consuming 
diets with light aflatoxin contamina-
tion (Yeh et al., 1989). In a case–
control study in Taiwan, China, two 
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biomarkers, AF–alb and aflatoxin–
DNA adducts in liver tissue sam-
ples, were measured (Lunn et al., 
1997). The proportion of subjects 
with a detectable level of AF–alb 
was higher for cases of HCC than 
for matched controls (OR, 1.5). 
A statistically significant associa-
tion was found between presence of 
detectable AF–alb and risk of HCC 
among men younger than 52 years 
(multivariate adjusted OR, 5.3).

Another study, in Qidong, Chi-
na, examined 145 men with chronic 
HBV infection who were followed 
for 10 years to determine whether 
exposure to aflatoxin, concomitant 
exposure to hepatitis C virus (HCV), 
or family history of HCC increased 
the risk of developing HCC. Eight 
monthly urine samples collected 
before the initiation of follow-up 
were pooled to analyse for AFM1. 
AFM1 was detected in 78 (54%) of 
the subjects, and the risk of HCC 
was increased 3.3-fold (95% CI, 
1.2–8.7) in those with detectable 
AFM1 (> 3.6 ng/L). The attributable 
risk from aflatoxin exposure, de-
fined as the presence of detectable 
AFM1, was 0.553 (95% CI, 0.087–
0.94). The relative risk of fatal cir-
rhosis for individuals whose urine 
contained elevated AFM1 was 2.8 
(95% CI, 0.6–14.3). Concomitant in-
fection with HCV increased the risk 
of HCC 5.8-fold (95% CI, 2.0–17), 
adjusted for age and AFM1 status. 
This study shows that aflatoxin ex-
posure detected by the presence 
of AFM1 in urine can account for 
a substantial portion of HCC risk 
in men with chronic HBV hepatitis 
(Sun et al., 1999).

Two major cohort studies incor-
porating aflatoxin biomarkers have 
clearly demonstrated the etiological 
role of this carcinogen in HCC. The 
first study, comprising more than 
18 000 men in Shanghai, China, 
examined the interaction of HBV 
and aflatoxin biomarkers as inde-

pendent and interactive risk factors 
for HCC. The nested case–con-
trol data revealed a statistically 
significant increase in the relative 
risk of 3.4 for those HCC cases in 
whom a urinary aflatoxin biomarker 
(AFB1–N7-guanine) was detected. 
For men whose serum was HBsAg-
positive but whose urine did not in-
dicate aflatoxin exposure, the rela-
tive risk was 7.3, but in individuals 
exhibiting both the urinary aflatoxin 
biomarker and positive HBsAg sta-
tus, the relative risk was 59.4 (Ross 
et al., 1992; Qian et al., 1994). These 
results strongly support a causal re-
lationship between the presence of 
carcinogen- and viral-specific bio-
markers and the risk of HCC. Sub-
sequent cohort studies in Taiwan, 
China, have substantially confirmed 
the results from the Shanghai inves-
tigation. Wang et al. (1996) exam-
ined HCC cases and controls nest-
ed within a cohort and found that in 
HBV-infected people there was an 
adjusted odds ratio of 2.8 for de-
tectable compared with non-detect-
able AF–alb, and an adjusted odds 
ratio of 5.5 for high compared with 
low levels of aflatoxin metabolites 
in urine. In a follow-up study, there 
was a dose–response relationship 
between urinary AFM1 levels and 
risk of HCC in chronic HBV carriers 
(Yu et al., 1997). As in the Shanghai 
cohort, HCC risk associated with 
AFB1 exposure was most striking 
among HBV carriers with detect-
able AFB1–N7-guanine in urine.

Furthermore, the relationship 
between aflatoxin exposure and 
development of HCC has been 
highlighted by molecular biological 
studies on the p53 tumour suppres-
sor gene, the gene most commonly 
mutated in many human cancers 
(Greenblatt et al., 1994). Many stud-
ies of p53 mutations in HCC occur-
ring in populations exposed to high 
levels of dietary aflatoxin have found 
high frequencies of G:C → T:A trans-

versions, with clustering at codon 
249 (Bressac et al., 1991; Hsu et al., 
1991). In contrast, no mutations in 
codon 249 were found in p53 in HCC 
from Japan and other areas where 
there was little exposure to aflatoxin 
(Ozturk, 1991; Aguilar et al., 1994).

Thus, studies of the prevalence 
of codon 249 mutations in HCC 
cases from populations in areas of 
high or low exposure to aflatoxin 
suggest  that a G → T transversion 
at the third base of codon 249 is 
associated with aflatoxin exposure, 
and in vitro data would seem to 
support this hypothesis. Applica-
tion of these specific mutations as 
biomarkers for early detection also 
offers great promise for HCC pre-
vention (Sidransky and Hollstein, 
1996). In a seminal study, Kirk et al. 
(2000) reported for the first time de-
tection of p53 codon 249 mutations 
in plasma of liver tumour patients re-
siding in The Gambia; however, the 
mutational status of their tumours 
was not determined. The authors 
also reported the presence of this 
mutation in the plasma of a small 
number of cirrhosis patients. Given 
the strong relationship between cir-
rhosis and future development of 
HCC, the possibility of this muta-
tion serving as an early detection 
marker needs to be explored. Jack-
son et al. (2001) examined 25 HCC 
tumours for specific p53 mutations. 
Analysis of 20 additional plasma–tu-
mour pairs showed that 11 tumours 
and 6 plasma samples contained 
the specific mutation. This group 
(Jackson et al., 2003) further ex-
plored the temporality of detection 
of this mutation in plasma before 
and after clinical diagnosis of HCC 
in the same patients. This study 
was facilitated by the availability of  
longitudinally collected plasma sam-
ples from a cohort of 1638 high-risk 
individuals in Qidong, China, who 
have been followed since 1992. 
The results showed that in samples 
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collected before liver cancer diag-
nosis, 21.7% (95% CI, 9.7–41.9%) 
of the plasma samples had detect-
able levels of the codon 249 muta-
tion in p53, whereas this mutation 
was detected in 44.6% (95% CI, 
21.6–70.2%) of the plasma samples 
collected after the diagnosis of liver 
cancer. This percentage of positive 
samples after liver cancer diagnosis 
compares with about 50% of all liver 
tumours in Qidong, suggesting a 
nearly 90% concordance between 
plasma and tumour p53 codon 249 
mutation outcome.

Finally, recent work has taken 
advantage of a population-based 

cancer registry to track primary 
liver cancer mortality in Qidong, 
China, a region of 1.1 million resi-
dents. This database indicates 
that a greater than 50% reduc-
tion in HCC mortality rates oc-
curred across birth cohorts from 
the 1960s to the 1980s for Qi-
dongese younger than 35 years. 
The prevalence of HBV infection 
was unchanged, since all were 
born before universal vaccination 
of newborns. Randomly selected  
serum samples from archived co-
hort collections from the 1980s to 
the present were analysed for af-
latoxin biomarkers. Median levels 

of the aflatoxin biomarker AF–alb 
decreased from 19.3 pg/mg in 1989 
to non-detectable (< 0.5 pg/mg) 
by 2009. A population-attributable 
benefit of 65% for reduced primary 
liver cancer mortality was estimated 
from a government-imposed switch 
of the dietary staple from maize to 
rice. These data reinforce the role 
that aflatoxin plays in high-exposure 
regions with populations at high 
risk for HCC (Chen et al., 2013).  
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chapter 4.  

Effects of aflatoxins and 
fumonisins on child growth

Although animal studies over 
the past 50 years have repeatedly 
shown an association between af-
latoxin exposure and growth impair-
ment in many species, the evidence 
has been lacking in humans.

Child growth faltering in low-
income countries usually begins 
in utero and continues for about 
2 years postnatally. Therefore, the 
current analysis is focused on stud-
ies of exposures to aflatoxins and/
or fumonisins during pregnancy 
in relation to birth outcomes (e.g. 
low birth weight) as well as growth 
outcomes in early childhood. The 
bulk of the literature relating child 
growth impairment to mycotoxin ex-
posure focuses on aflatoxin-related 
stunting. Khlangwiset et al. (2011) 
summarized the animal and epide-
miological studies that showed an 
association between child growth 
impairment and aflatoxin exposure. 

Here, the human studies are cri-
tiqued in greater depth in relation 
to the results obtained and aspects 
of study design, such as control of 
important confounding factors and 
cofactors.

Six studies were deemed to be 
of high quality, with well-defined 
sample sizes, exposure or dose as-
sessments, outcome measures, and 
appropriate multivariate analyses. 
These are summarized in Table 4.1 
and are categorized by toxin (afla-
toxin vs fumonisin) and by the timing 
of the exposure and outcome mea-
surement (pre- vs postnatal).

Eight additional studies did not 
meet these quality criteria and are 
therefore not included here (De Vries  
et al., 1989; Abdulrazzaq et al., 2002; 
Turner et al., 2003; Abdulrazzaq et 
al., 2004; Okoth and Ohingo, 2004; 
Sadeghi et al., 2009; Mahdavi et al., 
2010; Shouman et al., 2012).

Studies of pre- or postnatal 
aflatoxin exposure and 
postnatal growth

Two studies were published in-
volving a total of 680 children liv-
ing in four agro-ecological zones 
of Benin and Togo in West Africa 
(Gong et al., 2002, 2004). In the 
cross-sectional study, height-for-
age and weight-for-age were lower 
in a dose-dependent fashion for 
increasing aflatoxin exposures as 
measured by aflatoxin–albumin ad-
ducts (AF–alb) in serum (Gong et al., 
2002). Separately, in a multivariate 
analysis controlling for these fac-
tors as well as age and sex, it was 
determined that AF–alb levels in 
children’s serum were significantly 
associated with weaning status: 
the earlier the weaning, the higher 
the aflatoxin exposure (Gong et al., 
2003). In the longitudinal study, over 
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a period of 8 months children with 
the highest aflatoxin exposures had 
the smallest gains in height (Gong 
et al., 2004). These results were 
also adjusted for weaning status, 
agro-ecological zone, and socio-
economic status. The important 
contribution of this body of work is 
that in both a cross-sectional and a 
longitudinal study, higher aflatoxin 
exposures were shown to be corre-
lated with children’s height-for-age 
and also growth trajectories over a 
critical period of child development.

A study in The Gambia found a 
significant association between in 
utero aflatoxin exposure and growth 
faltering in infants (Turner et al., 
2007). This longitudinal study of 
138 pregnant women and their in-
fants followed the infants for 1 year 
and controlled for season, sex, pla-
cental weight, maternal weight, and 
gestation time, with AF–alb mea-
sured by enzyme-linked immuno-
sorbent assay (ELISA). AF–alb in 
maternal blood serum was a strong 
predictor of length/height gain and 
weight gain in the first year of life. 
It was predicted that if the mater-
nal AF–alb levels dropped from  
110 pg/mg to 10 pg/mg, the weights 
and heights of infants at age 1 year 
would increase by 0.8 kg and 2 cm, 
respectively (Turner et al., 2007).

In the United Republic of Tan-
zania, Shirima et al. (2015) stud-
ied a cohort of 166 infants aged 
6–14 months at enrolment and fol-
lowed them for 12 months. AF–alb 
was measured by ELISA at baseline 
and 6 and 12 months later. Anthro-
pometric measurements were also 
taken at each time point. Aflatoxin 
levels in this study were lower than 
in the West African studies, rising 
from a geometric mean of 4.7 pg/mg 
at baseline to 23.5 pg/mg at the 
end of the study. The authors found 
no significant association between 
aflatoxin dose and stunting in this 
population.

No study has found an asso-
ciation between aflatoxin exposure 
and wasting, although wasting was 
not common in these populations.

Establishing causality of the as-
sociation between aflatoxin expo-
sure and growth faltering, as report-
ed for studies in Benin and Togo, 
is uncertain due to the general dif-
ficulty of separating the effects of 
aflatoxin level from possible poor 
quality of the child’s diet. However, 
in the longitudinal study there was 
no association between AF–alb and 
micronutrient levels, suggesting 
that aflatoxin exposure was not ac-
companied by a general micronutri-
ent deficiency (Gong et al., 2004). 
Furthermore, the infant diet in The 
Gambia includes groundnuts, as op-
posed to maize in Benin and Togo, 
and yet results were broadly con-
sistent across these populations. 
The lack of an association between  
aflatoxin exposure and growth im-
pairment in the Tanzanian study 
suggests that there may be a 
threshold effect. Generalizing the 
evidence from these four studies is 
difficult because of their limited geo-
graphical distribution (three sites 
in West Africa) and insufficient in-
formation on the links between afla-
toxin level, dietary and other cofac-
tors, and growth outcomes.

Studies of maternal aflatoxin 
exposure and birth outcomes

Shuaib et al. (2010) studied mothers’ 
AF–alb levels at delivery and birth 
outcomes (preterm birth, small-for-
gestational-age, low birth weight, 
and stillbirth) in Kumasi, Ghana. In 
this study, AF–alb was measured us-
ing high-performance liquid chroma-
tography (HPLC) in the blood of 785 
mothers immediately after they had 
given birth. After adjusting for so-
ciodemographic variables (age, ed-
ucation, socioeconomic status, resi-
dence, and type of toilet facilities), 

it was found that the mothers in the 
highest quartile of AF–alb levels 
were at significantly higher risk of 
having babies with low birth weight, 
defined as being below 2.5 kg (ad-
justed odds ratio, 2.09; 95% confi-
dence interval, 1.19–3.68). None of 
the other birth outcomes were asso-
ciated with aflatoxin measure.

For the postnatal growth outcome 
in the Turner et al. (2007) study in 
The Gambia described above, birth 
weight and length were measured 
but were not associated with ma-
ternal AF–alb concentrations in mid 
and late pregnancy.

The validity of the findings from 
these studies on aflatoxin and low 
birth weight is uncertain because 
they have small sample sizes for ad-
verse birth outcomes, and thus may 
not be sufficiently powered to detect 
important outcomes. Furthermore, 
it is difficult in observational studies 
to separate the effects of aflatoxin 
dose from possible poor nutritional 
quality of the maternal diet (i.e. mo-
notonous maize diet with little di-
etary diversity).

Studies of postnatal fumonisin 
exposure and infant growth

Two recent studies from the United 
Republic of Tanzania suggest that 
fumonisin exposure may also be 
associated with stunting in children. 
Kimanya et al. (2010) estimated fu-
monisin exposure in 215 infants by 
measuring fumonisin in maize flour 
and estimating the daily fumonisin 
intake of the infants based on moth-
ers’ dietary recall. In this prospec-
tive cohort study, infants were en-
rolled at age 6 months and followed 
until age 12 months. Exposure was 
categorized as high or low using 
the Joint WHO/FAO Expert Com-
mittee on Food Additives (JECFA) 
provisional maximum tolerable 
dietary intake (PMTDI) of 2 µg/
kg body weight/day as the cut-off. 
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Even at baseline, the 26 infants in 
the high-exposure category were 
shorter than those with low expo-
sure. By age 12 months, the highly 
exposed infants were significantly 
shorter (by 1.3 cm) and lighter (by 
328 g) on average than the 105 in-
fants with low exposure, after con-
trolling for total energy and protein 
intake, sex, and village.

In the same study in the United Re-
public of Tanzania described above 
for aflatoxin exposure, Shirima et 
al. (2015) found that levels of uri-
nary fumonisin B1 (UFB1) at re-
cruitment were negatively associ-
ated with length-for-age Z-scores 
(LAZ) at both 6 months and 
12 months after recruitment. Mean 
levels of UFB1 from all three sam-
pling times showed an inverse 
association with LAZ and length 
velocity at 12 months after recruit-
ment. UFB1 levels (averaged from 
two urine samples) at baseline and 
6 months were associated with 
LAZ at 6 months and 12 months, 
respectively. Mean UFB1 levels 
from all three time points were 
strongly inversely related to LAZ at 
12 months.

These initial studies of fumoni-
sin and infant growth are small and 
offer only limited evidence but do 
strongly suggest the need for fur-
ther research on this relationship. 
The Shirima et al. (2015) study also 
demonstrates the co-occurrence of 
aflatoxin and fumonisin in maize-
based diets and emphasizes the 
need for multiple mycotoxin as-
sessments to make clear inferences 
about causal factors.

Uniting aflatoxin and fumonisin 
in a single framework is critical be-
cause dietary co-exposure is com-
mon in Africa and parts of Latin 
America (see Chapter 1). Smith et 
al. (2012) suggested possible mech-
anisms by which foodborne myco-
toxin exposure, singly or in combi-
nation, may contribute to impaired 

growth by compromising gut health. 
Gut enteropathy has been associat-
ed with chronic immune stimulation, 
which is inversely correlated with 
growth during infancy (Campbell 
et al., 2003). Increased intestinal 
permeability may allow transloca-
tion of microbial products, which 
can stimulate a systemic inflamma-
tory response. Smith et al. (2012) 
described two main pathways by 
which environmental enteropathy 
may cause growth retardation: mal-
absorption of nutrients in the small 
intestine and systemic immune ac-
tivation, resulting in suppression 
of the insulin-like growth factor 
1 (IGF-1) axis, which is strongly as-
sociated with stunting in African in-
fants (Prendergast et al., 2014). In 
older children (6–17 years), there is 
evidence that aflatoxin modulates 
IGF-1 (Castelino et al., 2015).

Scientific gaps and future 
research needs

Taken together, the studies de-
scribed above suggest that myco-
toxin exposure contributes to child 
growth impairment independent of, 
and together with, other risk factors 
that may cause stunting.

Among the multiple potential 
causes of growth faltering in young 
children globally, dietary mycotoxin 
exposure emerges as a potentially 
important factor. The weight of evi-
dence linking aflatoxin with growth 
impairment has increased over the 
past five decades of research – 
first, primarily in animal studies and, 
in the past decade, in the epidemio-
logical studies reviewed above.

One critical knowledge gap is 
the mechanism or mechanisms by 
which mycotoxins may cause child 
growth impairment. Nor, indeed, 
is it known whether all mycotoxins 
use the same mechanism of toxic-
ity that leads to growth impairment 
(and this should not be assumed). 

As such mechanisms are elucidat-
ed, the weight of evidence linking 
mycotoxins with growth impairment 
would become stronger. Several 
possible mechanisms have been 
proposed; certainly, one or more 
may be relevant to the role of myco-
toxins in growth impairment.

Immune system dysfunction 
mediated by mycotoxin exposure 
(Bondy and Pestka, 2000; Turner 
et al., 2003) could increase risk of 
infections in children, which can 
lead to growth impairment from 
energy losses (e.g. diarrhoea or 
vomiting) and/or energy expended 
on recovery from illness. Also, af-
latoxin/fumonisin-mediated chang-
es in intestinal integrity could make 
hosts more vulnerable to intestinal 
pathogens (Gong et al., 2008b; 
Smith et al., 2012).

The IGF-1 axis may represent a 
common causal pathway in myco-
toxin effects on hepatocellular carci-
noma as well as growth retardation. 
Deregulation of the IGF axis has 
been identified in the development 
of hepatocellular carcinoma. An in-
creased expression of IGF-2 and the 
IGF-1 receptor (IGF-1R) and associ-
ated binding proteins with degrading 
receptors have emerged as crucial 
events in malignant transformation 
and tumour growth, in altering cell 
proliferation, and in deactivation 
of apoptotic pathways. Aflatoxin B1 
(AFB1) was shown to induce phos-
phorylation of IGF-1R and activation 
of the signalling cascade involving 
Akt (also known as protein kinase B) 
and Erk1/2 (extracellular signal-reg-
ulated protein kinases) in hepatoma 
cell lines (Ma et al., 2012). AFB1 was 
also found to downregulate insulin 
receptor substrate 1 (IRS-1) while 
upregulating IRS-2 through prevent-
ing proteasomal degradation. Of 
interest is that the p53 mutant p53-
mt249 increases IGF-2 transcription, 
suggesting that p53 mutation may 
be a link between AFB1 and IGF-2.
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Given the widespread global 
prevalence of aflatoxin and fumoni-
sin exposures and the large asso-
ciations observed with stunting in 
the seminal studies from West and 
East Africa, additional prospective 
studies are needed in a wider vari-
ety of contexts. If the associations 
reviewed in this chapter are estab-

lished, then the global burden of 
disease associated with mycotoxin 
exposure may be far greater than 
that based on mycotoxin links to 
cancer. Future prospective studies 
must be designed with adequate 
sample size to elucidate thresholds 
in dose–response and rigorously 
control for other known causes of 

growth faltering, such as low nu-
trient intake and diarrhoea preva-
lence. Studies of wasting as an out-
come (in addition to stunting) would 
be informative. Intervention studies 
in humans are ultimately needed to 
disentangle effects of toxins from 
effects of monotonous maize diets 
and associated poverty.
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chapter 5.  

Fetal and neonatal toxicities 
of aflatoxins and fumonisins

Studies of early-life effects of ex-
posure to mycotoxins in experimen-
tal animals may provide insight into 
relevant mechanisms of action that 
could contribute to short- and long-
term toxicities in exposed infants in 
human populations. Some relevant 
observations are summarized here.

Aflatoxins

Fetal toxicity of aflatoxin B1 (AFB1) 
has been reported in rats and mice. 
Toxic effects include decreased fetal 
weight, external and skeletal malfor-
mations, and neural tube defects 
(NTDs) (IARC, 1993). Developmen-
tal NTDs are relatively common 
birth defects that result from the 
failure of the neural tube to close 
properly (Wilde et al., 2014). In hu-
mans, the neural tube closes within 
the first 30 days of gestation, and in 
mice within the first 9 days.

NTDs have been reported in rat 
embryos exposed to AFB1 in vitro 
(IARC, 1993). Treatment of preg-
nant rats with AFB1 resulted in the 
formation of benign and malignant 
tumours in the liver, stomach, intes-
tine, endocrine organs, and central 
and peripheral nervous system in 
the offspring.

Intraperitoneal AFB1 treatment 
of mice during pregnancy produced 
retardation in fetal development, 
including cleft palate and diaphrag-
matic malformation. Carcinogen-
esis in adult mice mainly targeted 
the lungs, whereas in infant mice 
high incidences of liver cell tumours 
were produced (IARC, 2002). The 
20-fold lower level of DNA adducts 
in adult mice compared with neo-
natal mice is reflected in the lower 
incidence of hepatocellular carci-
noma (HCC), primarily related to 
differences in AFB metabolism and 

the resulting generation of DNA- 
reactive intermediates (IARC, 2002; 
Shupe and Sell, 2004).

Studies in newborn male and fe-
male transgenic mice that examined 
mutations in target genes showed 
no differences in mutation level 
between sexes (Woo et al., 2011; 
Wattanawaraporn et al., 2012). As 
female mice have a much lower 
incidence of HCC, sex differences 
related to inflammatory responses, 
cytokine expression, and sex hor-
mones could be responsible for 
the differences in tumour outcome. 
Sex differences in the occurrence 
of human HCC exist, and the effect 
of host responsive factors related 
to AFB and hepatitis B virus inter-
actions and the differential role of 
metabolism, oxidative, and inflam-
matory parameters have been sug-
gested as possible explanatory rea-
sons (Wild and Montesano, 2009).
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Fumonisins

Dietary folate sufficiency plays a 
crucial role in reducing NTD in-
cidence in humans (Wilde et al., 
2014). In areas of the world where 
maize is a dietary staple and where 
there is chronic fumonisin exposure, 
NTD rates are often very high com-
pared with countries where maize 
consumption is low (Marasas et al., 
2004; Gelineau-van Waes et al., 
2009). Wilde et al. (2014) noted that 
in blocking folate transport, fumoni-
sin was a plausible risk factor for 
NTDs. In 2012, the Joint WHO/FAO 
Expert Committee on Food Addi-
tives (JECFA) evaluated the exist-
ing human epidemiological studies 
linking fumonisin exposure to NTDs 
and concluded that the results, in 
combination with what is known 
about the toxicology of fumonisin, 
“indicate that fumonisin exposure in 
pregnant women may be a contrib-
uting factor to increased NTD risk in 
their babies” (Bulder et al., 2012).

Mechanistically, a case can be 
made for fumonisin intake as a risk 
factor since fumonisin inhibition of 
ceramide synthases disrupts the 
function of sphingolipid-dependent 
processes and signalling pathways 
necessary for normal neural tube 
closure. For example, studies in 
fumonisin-treated cells, mouse em-
bryos, and mice in vivo show that 
folate transport is inhibited as a re-
sult of alterations in the membrane 
biophysical properties induced 
by inhibition of the biosynthesis of 
complex sphingolipids (Sadler et 
al., 2002; Marasas et al., 2004). In 
mice, NTD incidence induced by in-
traperitoneal exposure on gestation 
days 7.5 and 8.5 was significantly 
reduced by folate supplementation 
and almost completely prevented 
by restoration of lipid raft function 
through the administration of gan-
glioside GM1 (Gelineau-van Waes 
et al., 2005). At this gestational time 

point, the chorion (from the ma-
ternal side) and allantois (from the 
embryonic side) are still in the pro-
cess of fusing, initiating formation of 
the mature placenta. Radiolabelled 
fumonisin B1 (FB1) crossed the de-
veloping placenta, resulting in accu-
mulation of free sphingoid bases in 
the placenta and embryos, a finding 
indicative of fumonisin inhibition of 
ceramide synthase in the develop-
ing embryo. Both the NTD incidence 
in the mice and the degree of dis-
ruption of sphingolipid metabolism 
were strain-dependent, indicating 
a possible genetic linkage between 
NTD induction and disruption of 
sphingolipid metabolism (Gelineau-
van Waes et al., 2005).

Subsequent studies showed that 
elevated levels of sphingoid base 
1-phosphates could also be de-
tected in the livers of fetuses from 
pregnant mice fed diets containing 
FB1 (Riley et al., 2006). The levels 
of sphinganine 1-phosphate in the 
fetuses from the NTD-susceptible 
mouse strain were significantly 
higher than in the resistant strain. 
More recent studies in mice have 
shown that the sphingoid base ana-
logue FTY720 can also induce high 
incidences of NTD in the suscepti-
ble mouse strain after oral exposure 
during the window of neural tube 
closure (gestation day 6.5–8.5). 
Both free sphinganine and FTY720 
are phosphorylated by sphingosine 
kinase to form sphinganine 1-phos-
phate and FTY720 1-phosphate, 
which can accumulate to very high 
levels in maternal blood and pla-
centa of mice of the susceptible 
strain treated with FB1 and FTY720, 
respectively (Gelineau-van Waes et 
al., 2012). In pregnant mice dosed 
with FTY720, both FTY720 and 
FTY720 1-phosphate were shown 
to accumulate in exencephalic 
embryos examined on gestation 
day 9.5 (Gelineau-van Waes et al., 
2012). The results provide proof in 

principle that, in addition to inhibi-
tion of folate transport, sphingoid 
base 1-phosphates also play an 
important role in NTD induction in 
fumonisin-treated mice.

Human embryonic stem cell-
derived neural epithelial progenitor 
cells treated with FB1 in vitro accu-
mulate both free sphingoid bases 
and sphinganine 1-phosphate, 
which were shown to disrupt signal-
ling pathways in these human cells 
(Callihan et al., 2012). Fumonisin 
inhibition of ceramide synthase has 
been shown in other human cells in 
primary culture (human umbilical 
vein endothelial cells and epidermal 
keratinocytes). Thus, fumonisin is 
an inhibitor of ceramide synthase 
in human cells in vitro, and (as in 
mouse in vivo) the accumulated 
sphinganine can be metabolized 
to the highly bioactive sphinganine 
1-phosphate.

Taken together, the data from the 
mouse studies in vivo and studies 
with human cells in vitro support 
the hypothesis that if the fumonisin 
enters the developing embryo it will 
inhibit ceramide synthase and has 
the potential to disrupt sphingolipid 
metabolism. Alternatively, bioac-
tive sphingoid bases and sphin-
goid base 1-phosphates, which are 
present at very high concentrations 
in the blood, could cross the pla-
centa or act indirectly on the vas-
culature to cause changes in the 
developing embryo.

Many feeding studies in farm and 
laboratory animals have document-
ed the dose-dependent relation-
ship between fumonisin exposure 
and the tissue and blood levels of 
key sphingolipids known to regulate 
physiological processes and signal-
ling systems that are essential for 
the animals’ health (Marasas et al., 
2004). Many of the processes po-
tentially affected by altered levels 
of bioactive sphingolipids are also 
critical for the health of the mother, 
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developing fetus, neonate, and litter. 
For example, complex sphingolip-
ids and sphingolipid metabolites are 
critical for intestinal nutrient uptake 
(Jennemann and Gröne, 2013), in-
sulin and insulin-like growth factor 
1 receptor (IGF-1R) signalling (Martin 
et al., 2009; Park et al., 2014), lym-
phocyte trafficking (Pappu et al., 
2007), blood–brain barrier and vas-
cular endothelial integrity (Cannon 
et al., 2012; Cruz-Orengo et al., 
2014), and histone acetylation (Hait 
et al., 2009), among others.

In utero exposure to 
fumonisin in humans: 
scientific gaps and
research needs

As noted above, in areas of the world 
where maize is a dietary staple and 
where there is chronic fumonisin 
exposure, NTD rates are often very 
high. For example, in South Africa, 
high NTD incidence has been re-
ported in parts of rural Transkei 
(61/10 000) and in rural areas in 
Limpopo Province (35/10 000). In 
contrast, the incidence is much 
lower in urban communities such as 
Cape Town (1.06/10 000), Pretoria 
(0.99/10 000), and Johannesburg 
(1.18/10 000) (Marasas et al., 2004). 
The difficulties of accurately cap-
turing population-based rates for 
NTDs, particularly in low-income 
countries, make these assessments 
complicated in regions where there 
is high fumonisin exposure.

There are many gaps in the un-
derstanding of the in utero expo-
sure to fumonisins and possible 

effects on child health. Studies in 
mice have revealed that NTDs re-
sult from exposure very early in fetal 
development. At the moment there 
are no human data demonstrat-
ing the ability of fumonisin to cross 
the emerging human placenta as is 
the case in mice. It is unlikely that 
fumonisin would be detectable in 
umbilical cord blood, given the very 
small amount of fumonisin that has 
been detected in animal blood after 
exposure to relatively high levels of 
fumonisin (Riley and Voss, 2006; 
Bulder et al., 2012) and the rapidity 
with which FB1 is cleared from hu-
man urine (Riley et al., 2012), sug-
gesting that the half-life in the human 
body is very short.

Although it provides evidence 
for fumonisin inhibition of ceramide 
synthase, a shortcoming of using 
elevated sphinganine 1-phosphate 
in blood as a biomarker is that it 
will work well only when high and 
low fumonisin exposure groups 
are compared, based on concur-
rent comparison with the urinary 
FB1 levels.

Progress in developing a better 
understanding of the potential for in 
utero exposure to either fumonisin 
or bioactive sphingolipid metabolites 
in humans is dependent on the dis-
covery of new biomarkers that have 
a longer half-life or reflect long-term 
exposure. The half-life of sphingoid 
base 1-phosphates in human blood 
is likely to be short, based on the 
half-life of FTY720 1-phosphate 
and sphingoid base 1-phosphates 
in mouse blood (Gelineau-van 
Waes et al., 2012; Riley et al., 2015). 

Studies in rats and mice show that 
the half-life of elevated free sphinga-
nine and sphinganine 1-phosphate is 
longer than that of FB1 in the blood 
or urine; however, it is still elevated 
for only a few days to a week before 
returning to control levels (Bulder et 
al., 2012; Riley et al., 2015).

Fumonisin has been shown to in-
hibit folate transport in animal mod-
els. Folate supplementation has 
been shown repeatedly to reduce 
NTD incidence in humans. Thus, 
studies to assess folate, vitamin, and 
micronutrient sufficiency in popula-
tions consuming maize as a dietary 
staple are needed to better inform 
the design of educational approach-
es to improve the nutritional status of 
women. This information will also be 
useful for designing approaches to 
allow supplementation at either an 
individual or a community level.

Equally unknown are the possible 
consequences of fumonisin expo-
sure or exposure to elevated sphin-
goid base 1-phosphates in utero on 
child health in early infancy or later 
in life. Studies on the susceptible 
mouse model have identified sev-
eral molecular markers and targets 
in embryos from fumonisin-treated 
mice, but their relevance to human 
exposure is unknown.

In areas where maize is a dietary 
staple, future studies intended to re-
veal any possible linkage between 
maternal fumonisin exposure and 
reproductive toxicity and growth 
impairment in children will need to 
consider the possibility of co-ex-
posure to other mycotoxins, and in 
particular aflatoxin.
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chapter 6.  

Effects of aflatoxins and 
fumonisins on the immune 

system and gut function

There are few studies in humans 
that provide information on the im-
pact of aflatoxin on the immune sys-
tem. Those available have provided 
suggestive evidence of effects of 
aflatoxin similar to those observed in 
relevant animal models (IARC, 2002; 
Turner et al., 2003; Wild and Gong, 
2010). No studies are available of the 
impact on immune function in popu-
lations of children highly exposed to 
fumonisin or of co-exposure to afla-
toxin. Given the prevalence of myco-
toxin exposures in populations vul-
nerable to infectious diseases, there 
is a need for well-designed studies of 
the impact of aflatoxin and fumonisin, 
alone or in combination, on the im-
mune system and intestinal integrity.

Aflatoxins 

In vivo studies in pigs exposed to afla-
toxin B1 (AFB1) suggest that cytokine 

upregulation occurs at relatively 
low AFB1 exposures (~0.9 mg/kg 
of feed) (Meissonnier et al., 2008). 
Interleukin-1 (IL-1) levels increased 
1 day after dosing, due to produc-
tion by peritoneal macrophages, in 
Fisher 344 rats given a single intra-
peritoneal injection of 1 mg/kg body 
weight (bw) AFB1 (Cukrová et al., 
1992). Also in Fisher rats, weaned 
animals were fed diets containing 
from 0 to 1.6 ppm AFB1, 4 weeks 
on and 4 weeks off for 40 weeks, or 
the 1.6 ppm AFB1 diet continuously 
(~0.1 mg/kg bw/day). The percent-
ages of T and B cells in spleen were 
affected after the dosing cycles. 
Significantly increased production 
of IL-1 and IL-6 by lymphocytes in 
culture was seen in the second dos-
ing cycle (12 weeks) and the second 
“off” cycle (16 weeks) at the higher 
doses. Inflammatory infiltrates were 
observed in the liver after 8 weeks 

of continuous and intermittent dos- 
ing and were increased in size and 
number at 12 weeks in both 1.6 ppm 
dose groups. This correlated with 
peak production of IL-1 and IL-6 
(Hinton et al., 2003).

Exposure of Fisher rats to AFB1 
at 5–75 mg/kg bw by gavage for 
1 week showed dose-dependent de-
creases in the percentage of splenic 
CD8+ T cells and CD3−CD8a+ nat-
ural killer (NK) cells. A general inhi-
bition of the expression of IL-4 and 
interferon-gamma (IFN-γ) by CD4+ T 
cells, of IL-4 and IFN-γ expression by 
CD8a+ cells, and of tumour necrosis 
factor  alpha  (TNF-α)  expression  by 
NK cells was also found. These data 
suggest that AFB1 elicits inflamma-
tory responses by inducing cytokine 
expression (Qian et al., 2014).

Studies in cell lines suggest that 
AFB1 inhibits the viability of hemato-
poietic progenitors and IL-8-induced 
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neutrophil chemotaxis (Roda et al., 
2010; Bruneau et al., 2012). These 
effects, although identified in vitro, 
are likely part of the mechanism for 
AFB1-related impairment of phago-
cytosis and bactericidal activity 
observed in animal models in vivo. 
Altered white blood cell function 
is likely to result in a longer and 
more severe bacterial/fungal infec-
tion with greater inflammation. El-
evated levels of pro-inflammatory 
cytokines have been reported in 
humans, associated with AFB1 ex-
posure (Jiang et al., 2005). How-
ever, it is not clear whether this up-
regulation is predominantly direct 
or indirect (as a consequence of 
prolonged infection/inflammation). 
Direct upregulation of cytokines 
might occur through increased tran-
scription factor binding or increased 
cytokine messenger RNA (mRNA) 
stability. Another potential mecha-
nism of cytokine upregulation is re-
lated to infection in a compromised 
host. An impaired immune system, 
in the context of AFB1 exposure, 
has been associated with increased 
viraemia, parasitaemia, increased 
susceptibility to infection, and re-
duced response to vaccines in 
animals (Bondy and Pestka, 2000; 
Meissonnier et al., 2006).

The intestine functions as a se-
lectively permeable barrier, placing 
the mucosal epithelium at the cen-
tre of interactions between the mu-
cosa and luminal contents, which 
include dietary antigens, microbial 
products, and nutrients (Groschwitz 
and Hogan, 2009; Turner, 2009). 
The intestine is where various im-
mune mechanisms contribute to 
pathogen defence. Toxins that alter 
the integrity of intestinal epithelium 
are likely to have consequences for 
both nutrient absorption and path-
ogen exclusion. Intestinal epithelial 
cells transport nutrients and fluids 
and serve to restrict the access 
for luminal antigens to the inter-

nal milieu. Any damage leads to 
enhanced permeability of the cell 
layer. There are few recent studies 
on the impact of dietary AFB1 on 
gut function in relevant animal mod-
els (Grenier and Applegate, 2013). 
A common in vitro model system for 
gut integrity is the Caco-2 cell line 
(human epithelial colorectal cells). 
In  this  model,  aflatoxin  (150  μM) 
decreased trans-epithelial electrical 
resistance (Gratz et al., 2007).

Fumonisins

Two studies were conducted in 
BALB/c mice with five daily subcu-
taneous injections of 2.25 mg/kg bw 
fumonisin B1 (FB1). The FB1 treat-
ment resulted in an increase in the T-
lymphocyte population in the spleen 
of female mice only, compared with 
controls (Johnson and Sharma, 2001). 
At a dose of 25 mg/kg bw, FB1 
dramatically reduced the imma- 
ture CD4+/CD8+ double-positive cell 
population in the thymus of female 
mice but not of male mice (Johnson 
and Sharma, 2001). In a second 
study under the same conditions, 
FB1 treatment markedly reduced 
relative spleen and thymus weights 
in female mice but not in male mice. 
Decreased plasma immunoglobulin 
G (IgG) levels were seen in female 
mice, and the effect was smaller in 
male mice. In addition, concanav- 
alin A- and phytohaemagglutinin-
induced T-lymphocyte proliferation 
was significantly reduced in female 
mice exposed to FB1. The results of 
this study suggest that FB1 is immu-
nosuppressive in mice. The magni-
tude of the effect was highly depen-
dent on sex; female mice were more 
susceptible than male mice (John-
son et al., 2001).

Fumonisin has been demon-
strated to alter intestinal barrier 
integrity (Bouhet et al., 2004) and 
immune function in several studies 
that affected animal health. Other 

effects on immune responses in-
cluded alterations in cytokine ex-
pression, decreased antibody titre 
in response to vaccination, and in-
creased susceptibility to secondary 
pathogens (Bulder et al., 2012). In 
swine, oral exposure to fumonisin 
resulted in sex-specific decreased 
antibody titres after vaccination 
and increased susceptibility to sec-
ondary pathogens (Oswald et al., 
2003; Halloy et al., 2005; Marin 
et al., 2006). There is one study in 
swine exposed to pure fumonisin at 
a dose of 1.5 mg/kg bw for 7 days. 
FB1 treatment induced a significant 
downregulation of the expression of 
IL-4 mRNA in the spleen and mes-
enteric lymph nodes (Taranu et al., 
2005). Also, an extract of culture 
material containing fumonisin was 
incorporated in the basal diet to pro-
vide feed containing FB1 at 8 mg/
kg of feed for 28 days. The animals 
were immunized subcutaneously 
with Agavac, a vaccine made with 
a combination of formol-inactivated 
Mycoplasma agalactiae strains, fol-
lowed by a booster shot 2 weeks 
later. Exposure to the contaminated 
diet diminished the specific anti-
body titre after vaccination against 
M. agalactiae. In contrast, inges-
tion of the contaminated feed had 
no effect on the serum concentra-
tion of the immunoglobulin subsets 
(IgG, IgA, and IgM). The authors 
concluded that FB1 altered the cy-
tokine profile, which in turn affect-
ed the antibody response (Taranu 
et al., 2005).

In pigs fed a diet containing fu-
monisin at about 0.25 mg/kg bw, 
multifocal atrophy and villi fusion, 
apical necrosis of villi, cytoplas-
mic vacuolation of enterocytes, 
and oedema of lamina propria 
were observed in intestinal tissue 
compared with controls. Lymphat-
ic vessel dilation and prominent 
lymphoid follicles were also ob-
served (Bracarense et al., 2012). 
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No information was provided on 
the functional impact of these mor-
phological changes. Modulation of 
intestinal cytokine production was 
also observed in pigs exposed to 
fumonisin, as well as in intestinal 
cell lines (Bouhet et al., 2006; Bra-
carense et al., 2012). There have 

been at least two studies in mice 
showing FB treatment-induced dis-
ruption of sphingolipid metabolism in 
the small intestine. One study used 
subcutaneous injection (single dose, 
25 mg/kg bw) and the other oral ga-
vage (single dose, 25 mg/kg bw) 
(Enongene et al., 2000, 2002). This 

work illustrated the importance of 
sphingolipids and sphingolipid me-
tabolites in the gut in relation to in-
flammation and barrier function, and 
also in the regulation of inflammatory 
response associated with endotoxin 
and microbial sepsis (Enongene et 
al., 2000, 2002).
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chapter 7.  

Intervention strategies to 
 reduce human exposure to

aflatoxins and fumonisins

This chapter reviews a broad 
range of interventions associated 
with the reduction of aflatoxin and/
or fumonisin exposure that have 
proven health benefits at a com-
munity level and are suitable for 
implementation in rural Africa and 
Central America. The interven-
tions vary in resources required, 
complexity, and useful scale. For 
effective implementation, all re-
quire social consent and political 
will. Some interventions are com-
plicated and resource-intensive, 
and others are simple to implement 
on a community or even household 
scale. Nonetheless, all are unified 
by the need for cultural and sex-
specific training, access to robust 
technology for implementation, 
and sustainability. Some of the in-
terventions require further work to 
verify their efficacy in areas of high 
aflatoxin exposure.

The Working Group assessed the 
question of effective interventions in 
low-income countries using studies 
where there was reliable direct or 
indirect evidence of improvement of 
health, including reduced mycotoxin 
biomarker levels. The evaluation 
of evidence about public health in-
terventions includes examining the 
credibility of the evidence as well as 
its completeness and its transfer-
ability at an individual, community, 
or national level. The “best quality” 
evidence (i.e. indicating that an inter-
vention is ready for implementation) 
is for an approach that has reached 
a mature stage of development, re-
sults in significant intervention ef-
fects, and addresses the needs of 
important stakeholders (Rychetnik 
et al., 2002). Fifteen interventions 
were placed into one of four catego-
ries: (1) sufficient evidence for im-
plementation, (2) needs more field 

evaluation, (3) needs formative re-
search, and (4) no evidence or inef-
fective. Recommendations on how 
to approach the necessary further 
investigation and potential scale-up 
were also considered. The results of 
these evaluations are summarized 
in Table 7.1. The following text pro-
vides an analysis of the respective 
interventions.

Regulation

Although they are not explicitly dis-
cussed as interventions, corporate, 
international, and governmental reg- 
ulatory frameworks can be impor-
tant drivers in the reduction of my-
cotoxin levels in food and feed. 
The available evidence shows that 
the development of a functioning 
food safety system begins in the 
corporate sector, both for domestic 
consumption and for export crops 
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Intervention Category of 
evidencea Context Gap (research/translation) Combination/issues/comments

Dietary diversity —b Dose effect 
reduction of 
hepatocellular 
carcinoma

•  Investment in appropriate crops for 
the target region, both suitable for the 
climate and culturally acceptable

Comment: Difficult in food-insecure 
situations or in food-, arable land-, or 
water-insecure countries

Genetic resistance Contamination
 

Aflatoxin in 
maize

3  • Movement of resistance in agronomic 
lines

•  Identification of resistance genes

Combination: Biocontrol; agronomic and 
post-harvest practices
Issues: Small research community; 
large environmental effect on phenotype 
expression; resistance is polygenic

Fumonisin in 
maize

2  • Movement of resistance in agronomic 
lines

•  Identification of resistance genes

Combination: Agronomic and post-
harvest practices
Issues: Small research community; 
large environmental effect on phenotype 
expression; resistance is polygenic

Aflatoxin in 
groundnuts

4  •  Identification of sources of resistance
• Movement into agronomic lines

Combination: Biocontrol; agronomic and 
post-harvest practices
Issues: Large environmental effect on 
phenotype expression limits resistance 
expression over large areas; small 
research community; resistance is 
polygenic; resistance is not well described

Biological control Contamination

Atoxigenic 
strains

2  • Frequency and outcomes of genetic 
recombination

•  Consistency of efficacy evaluated across 
geography and users

Combination: Agronomic and post-
harvest practices
Comment: Ongoing translational research 
in Africa and the USA

Primary prevention Dose effect

Dioctahedral 
smectite clay

2  •  Dose and duration on efficacy and safety
• Effects on infants, children, and pregnant 

women

Combination: Clay amended with 
chlorophyllin and other trapping agents
Issue: Formulation strategies
Comments: Possible enhanced efficacy 
during outbreaks; potential to mitigate 
aflatoxins and fumonisins

Chlorophyllin 2  

Lactobacillus 3  

Yeast glucan 4  

Post-harvest Dose effect/ 
contamination

Package 1 • Knowledge translation is cultural
• Modules need to be developed 

in partnership with farmers, area 
agricultural extension workers, traditional 
leaders, church groups, health workers, 
and civil society

Comments: Ready to be implemented; 
use in chronic-exposure situations as an 
ongoing intervention package; needs to 
be applied as a multifactorial intervention 
package

Sorting 1  • Done in all cultures for all crops; 
however, best practices need to be 
formally taught at the village level

Issue: Fate of the rejected food
Comment: Important for complementary 
food

Nixtamalization 1  • Requires adequate water for washing
• Has not been adapted in Africa or Asia

Table 7.1. Summary of the Working Group’s evaluation of interventions associated with the reduction of aflatoxin 
and/or fumonisin exposure
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Intervention Category of 
evidencea Context Gap (research/translation) Combination/issues/comments

Chemoprevention Dose effect 

Broccoli sprout 
extract

2 • To date, phase II clinical trials for 
efficacy; need for scaling to longer-term 
interventions

• Translation to local, culturally acceptable 
foods with these enzyme inducers

• Biomarker studies to date; no health end-
point studies yet

Comment: Opportunity for use in acute-
exposure situations; native plants; dietary 
diversification

Dithiolethiones 2  

Green tea 
polyphenols

2

Table 7.1. Summary of the Working Group’s evaluation of interventions associated with the reduction of aflatoxin 
and/or fumonisin exposure (continued)

a Categories of evidence for public health interventions: (1) sufficient evidence for implementation, (2) needs more field evaluation, (3) needs 
formative research, and (4) no evidence or ineffective.
b This is a proven intervention (see text) but could not be designated as 1 (sufficient evidence for implementation) because of the complexity of 
achieving this goal in most circumstances.

(Reardon et al., 1999; Kussaga et al., 
2014). As capacity and appropriate 
legal frameworks and enforcement 
structures are put in place, contami-
nation levels in crops eventually de-
crease. However, the positive impact 
on subsistence farmers is usually 
limited, with the benefits generally 
going to larger farmers (Hansen and 
Trifković, 2014).

Where regulatory systems are 
established, implementation of in-
tervention strategies and technolo-
gies is usually robust and foodborne 
exposure is low. Where regulatory 
systems are not fully functional, a ba-
sic developmental goal should be to 
put systems in place and get them op-
erational. Enforcement of risk-based 
food law is critical to public health 
and economic viability, and drives 
the development and sustained use 
of intervention technologies.

Dietary diversity to mitigate 
mycotoxin exposure

Dietary diversity is a good way to 
improve nutrition and health (FAO, 
1997; Frison et al., 2006; Lovo and 

Veronesi, 2014). Aspects important 
for a healthy diet include the num-
ber of different foods, the quanti-
ties, and the health (nutritional) 
value of those foods available 
for consumption (Drescher et al., 
2007). Dietary data from the United 
Republic of Tanzania estimated the 
effect of crop diversification on child 
growth and projected a positive 
and significant impact on child nu-
tritional status, particularly for girls 
and on children’s height (Lovo and 
Veronesi, 2014).

A lack of dietary diversity is di-
rectly related to levels of mycotoxin 
exposure. In rural Africa and parts 
of Latin America, a high percent-
age of calories come from maize,  
which is commonly contaminated by 
aflatoxins and/or fumonisins. In 
East Africa, aflatoxin exposure has 
also been directly correlated with 
reported daily intake of maize, and 
fumonisin exposure occurs almost 
entirely from maize (Kimanya et 
al., 2008). Another major source of 
exposure to aflatoxin is through the 
consumption of groundnuts (Liu and 
Wu, 2010; IARC, 2012). Access to 

a greater variety of foods will lower 
the risk of exposure by lessening 
the intake of these commonly con-
taminated foods (Groopman et al., 
2008). Replacing foods at high risk 
of mycotoxin contamination with 
those at lower risk would improve 
access to foods with better nutri-
tional value.

An excellent example of improved 
health outcomes after a switch from 
a food source at high risk of aflatoxin 
contamination to one at lower risk 
occurred in Qidong, China. A gov-
ernment policy to grow foods that are 
eaten locally, combined with a prohi-
bition on interregional shipments of 
food products, had forced residents 
of Qidong County to produce and 
consume primarily maize for several 
decades. Liberalization of the trans-
boundary provincial trade policy al-
lowed rice to be imported from other 
regions of the country, replacing 
maize as the staple cereal. Since af-
latoxin contamination is much lower 
in rice than in maize, the result was 
reduced aflatoxin exposure and a 
precipitous drop in liver cancer inci-
dence (Chen et al., 2013).
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Food diversity and exposure 
risk can also be driven by socio-
economic factors. In West Af-
rica, Egal et al. (2005) reported 
that the average frequency of 
maize consumption is 5–7 days 
per week. Maize is currently the 
most common cereal staple, hav-
ing displaced the native cere-
als sorghum and millet and other 
sources of starch (Miracle, 1966). 
Consumption of groundnuts, an-
other common source of aflatox-
ins, was positively correlated with 
household and maternal wealth 
variables and varied by agro- 
ecological zone. In Ghana, Shuaib 
et al. (2012) showed interesting 
evidence of an inverse relation-
ship between a woman’s income 
and the level of aflatoxin biomark-
ers in her blood. This suggested 
that greater purchasing power 
may improve the opportunity for 
diversifying food choices.

Changing food preferences 
where there are no economic 
constraints can be a matter of so-
cial marketing and awareness. 
However, changing food prefer-
ences and access for people liv-
ing in food-insecure conditions 
presents an enormous challenge. 
In 1950, by far the major source 
of dietary starch in sub-Saharan 
Africa was sorghum and millet 
(40%), followed by cassava (30%) 
and maize (15%) (Miracle, 1966). 
The subsequent shift towards 
maize is part of a global trend; 
over the past 50 years, consump-
tion of sorghum and millets has 
declined by 50% and consump-
tion of cassava by 40% (Khoury 
et al., 2014). In turn, this may have 
had a major role in increasing af-
latoxin exposures. In West Africa, 
for example, aflatoxin concentra-
tions in pearl millet and sorghum 
were substantially lower than 
those in maize (Bandyopadhyay et 
al., 2007).

Genetic resistance to 
aflatoxin and fumonisin 
contamination of maize 

Aflatoxins

Genetic resistance to aflatoxin and 
fumonisin contamination exists in 
maize populations, but it is com-
plex and involves multiple genes, 
and genetic engineering requires 
moving resistance genes into ag-
ronomically acceptable genotypes 
(Moreno and Kang, 1999; Eller 
et al., 2008; Warburton et al., 2013; 
Zila et al., 2013; Warburton and Wil- 
liams, 2014).

Resistance to ear-feeding in-
sects is associated with lower lev-
els of aflatoxins and fumonisins 
(Miller, 2001; Munkvold, 2003). 
Transgenic expression of Bacillus 
thuringiensis (Bt) toxins reduces 
insect damage and fumonisin 
contamination (de la Campa et al., 
2005; Barros et al., 2009; Ostry 
et al., 2010; Abbas et al., 2013; Pray 
et al., 2013). The effectiveness 
of Bt in reducing aflatoxin con-
tamination is inconclusive (Abbas 
et al., 2013).

Proteomic, transcriptomic, and 
histological analyses of the inter-
action between the fungus and 
the maize seed show striking simi-
larities to other well-characterized 
systems, suggesting that resis-
tance is achievable. The new ge-
netic technologies, along with im-
proved breeding populations and 
phenotyping strategies, have dra-
matically increased the number of 
genetic markers associated with 
resistance to aflatoxins and fu-
monisins and have identified puta-
tive resistance genes and proteins 
(Lanubile et al., 2010; Brown et al., 
2013; Campos-Bermudez et al., 
2013; Dolezal et al., 2013, 2014; 
Warburton and Williams, 2014).

Progress has been made in se-
lecting breeding lines of maize with 

resistance to aflatoxin accumula-
tion that show high and repeatable 
resistance under different envi-
ronments (Mayfield et al., 2012; 
Williams and Windham, 2012). Ad-
ditional resistance has come from 
the Germplasm Enhancement of 
Maize Project, which is a public–
private programme that uses exotic 
germplasm from across the world, 
including from the International 
Maize and Wheat Improvement 
Center (CIMMYT) (Li et al., 2002; 
Henry et al., 2013). Use of the 
maize core diversity panel, which 
captures most of the maize diver-
sity in breeding programmes world-
wide (Flint-Garcia et al., 2005), 
has identified more than 30 lines 
showing good resistance to myco-
toxins in up to seven environments 
(Warburton et al., 2013; Warburton 
and Williams, 2014). These maize 
germplasm lines are publically 
available, and several already have 
been included in a joint United 
States Agency for International De-
velopment/United States Depart-
ment of Agriculture (USAID/USDA) 
project, together with two CGIAR 
centres, with the goal of develop-
ing resistant hybrid cultivars (War-
burton and Williams, 2014). As 
part of a USA–Africa collaborative 
strategy, the International Institute 
of Tropical Agriculture and USDA 
released six inbred lines adapted 
to Africa with enhanced resistance 
to aflatoxin accumulation (Menkir 
et al., 2006, 2008).

In summary, maize hybrids with 
improved resistance to Aspergil-
lus flavus and aflatoxins are being 
used, but the level of resistance is 
not yet adequate to prevent unac-
ceptable aflatoxin contamination in 
some fields. Putative resistance-
associated genes have been iden-
tified by gene expression profiling 
studies and could be evaluated for 
their role in resistance to aflatoxin 
contamination.
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Fumonisins

Many genotypes have been iden-
tified with some resistance to 
fumonisin accumulation (Mester- 
házy et al., 2012; Santiago et al., 
2013), including germplasm lines 
adapted to Argentina (Presello 
et al., 2011), Central and West 
Africa (Afolabi et al., 2007), and 
South Africa (Small et al., 2011), 
but no hybrids are available with 
adequate resistance. Heritability 
for resistance to fumonisin accu-
mulation is higher than that for re-
sistance to aflatoxin contamination 
(Zila et al., 2013), and a moderate 
to high genotypic correlation be-
tween ear rot and fumonisin con-
tent suggests that resistance to the 
fungus and to fumonisin produc-
tion may be closely linked (Eller et 
al., 2008; Presello et al., 2011; Zila 
et al., 2013). This correlation has 
allowed selection for resistance to 
fumonisin accumulation based on 
ear rot scores (Robertson et al., 
2006; Eller et al., 2008; Santiago 
et al., 2013), thus making screen-
ing quicker and less expensive.

Genome-wide association stud-
ies on the maize core diversity 
panel have identified three novel 
loci associated with 3–12% of the 
genetic variation associated with 
resistance to ear rot (Zila et al., 
2013). Three putative resistance 
genes co-localized with the ge-
netic markers. The large number 
of genetic markers available on 
the diversity panel is allowing the 
dissection of complex quantitative 
traits, such as resistance to myco-
toxin accumulation.

Fumonisin accumulation is con-
sistently decreased when Bt maize 
hybrids effectively reduce insect 
damage. This can make the differ-
ence between maize products that 
are relatively safe and those that 
are not (de la Campa et al., 2005; 
Pray et al., 2013).

Genetic resistance to 
aflatoxin contamination
of groundnuts

Genetic resistance to aflatoxin 
contamination in groundnuts is 
complex: heritability is low to mod-
erate, there is a poor correlation 
between fungal growth and afla-
toxin contamination, and results 
from in vitro seed assays do not 
correlate with those from field 
assays (Holbrook et al., 2008; 
Arunyanark et al., 2010; Girdthai et 
al., 2010b; Hamidou et al., 2014).

Germplasm with some resis-
tance is available, but genotypes 
do not show consistent response 
across locations, due to large in-
teraction effects between the geno- 
type and environment on aflatoxin 
contamination (Liang et al., 2006; 
Arunyanark et al., 2010; Girdthai et 
al., 2010a, 2010b; Hamidou et al., 
2014).

One key environmental ef-
fect is drought stress, and many 
programmes have focused on 
breeding for drought tolerance as 
a way to improve resistance to  
aflatoxin contamination. A field 
study in West Africa examined 
268 genotypes over four locations 
and confirmed that drought stress 
intensity increases aflatoxin con-
tamination; however, the investi-
gators did not show a significant 
relationship between drought toler-
ance and aflatoxin contamination 
(Hamidou et al., 2014), possibly 
due to other site-specific environ-
mental effects.

An improved understanding of 
resistance mechanisms should 
help improve selection of resistant 
germplasm. Genome sequences 
of the two diploid progenitors of 
groundnut are now available (http://
peanutbase.org/browse_search), 
which may facilitate molecular 
mapping and breeding for disease 
resistance.

Biological control
of aflatoxins

In the USA, biocontrol strategies 
have been developed to reduce 
aflatoxin contamination in cotton-
seed (Cotty, 1994), groundnuts 
(Dorner and Lamb, 2006), maize 
(Dorner et al., 1999), and pis-
tachio nuts (Doster et al., 2014) 
using strains of A. flavus that do 
not produce aflatoxins (i.e. atoxi-
genic strains). In commercial prac-
tice in the USA, these atoxigenic 
strains are applied to the field 
during crop development (Cotty, 
1994; Dorner and Lamb, 2006). 
Under appropriate conditions, the 
spread of the introduced strain 
throughout the field displaces 
the native, toxic strains (Mehl et 
al., 2012; Atehnkeng et al., 2014). 
Strains formulated into biological 
control products may be single 
clones (Bock and Cotty, 1999) or 
be composed of more than one 
strain to improve local adaptability 
(Atehnkeng et al., 2014).

Several factors have been iden-
tified that affect efficacy. Dew and 
moisture will allow for the atoxigen-
ic strains to produce spores over 
several days (longer if conducive 
conditions persist). If the seeds are 
placed on dry soil, an adequate 
production of spores may not oc-
cur, but they will stay inert and via-
ble until moisture is available (Bock 
and Cotty, 1999). A late applica-
tion of atoxigenic strains on maize 
(after silking) may not be effective.  
In the event of a heavy rain shortly 
after the inoculum is spread, the 
biological control product may not 
stay evenly distributed on the sur-
face of the field. In a review of the 
use of atoxigenic strains of A. flavus 
in the USA, Abbas (2011) indicated 
that this technology is emerging as 
a useful management practice for 
reducing aflatoxin concentrations 
in maize.
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Use under African 
conditions

In one study in Nigeria, the inocu-
lation of a mixture of four endemic 
atoxigenic strains of A. flavus in 
maize plots in four agro-ecologies 
over 2 years resulted in significant 
reductions in aflatoxin concentra-
tions at harvest and after storage 
(Atehnkeng et al., 2014). At harvest, 
the reduction in aflatoxin ranged 
from 57.2% (27.1 ppb in untreated 
plots vs 11.6 ppb in treated plots) 
to 99.2% (2792.4 ppb in untreated 
plots vs 23.4 ppb in treated plots). 
The applied atoxigenic strains re-
mained with the treated crop, and 
the reduction in aflatoxin concen-
tration in grains after poor storage 
ranged from 93.5% (956.1 ppb in 
untreated vs 66.2 ppb in treated) to 
95.6% (2408.3 ppb in untreated vs 
104.7 ppb in treated).

In Nigeria, a similar percentage 
of maize samples were contaminat-
ed by both aflatoxin and fumonisin 
(Adetuniji et al., 2014; Adetunji et al., 
2014), which is not uncommon. In sit-
uations where conditions are permis-
sive for both aflatoxin and fumonisin 
in the field, interventions that are ef-
fective for both toxins are needed. 
Aside from Bt maize, which is not yet 
widely used in Africa, there are few 
interventions for pre-emptive preven-
tion of fumonisin in the field. Prelimi-
nary trials have shown potential for 
development of biological control 
treatment for Fusarium verticillioides 
(Sobowale et al., 2007).

Genetic recombination with A. fla-
vus has been shown to increase ge-
netic variation within the populations 
(Olarte et al., 2012; Horn et al., 
2014). Sexual recombination lead-
ing to the acquisition of toxin genes 
is possible, but the implications of 
this are not clear with respect to bio-
logical control (Abbas et al., 2011). 
Studies to date show that aflatoxin 
production is heritable and is not 

lost during sexual recombination; 
however, hybridization between tox-
ic and atoxigenic strains produced 
progeny of no or lower aflatoxin pro-
duction (Olarte et al., 2012).

Cyclopiazonic acid can also 
be produced by A. flavus

Cyclopiazonic acid (CPA) has been 
shown to be toxic and immunosup-
pressive in various strains of mice 
and rats as well as swine and poul-
try (Burdock and Flamm, 2000; 
De Waal, 2002; King et al., 2011). 
One of the commercial atoxigenic 
strains used in the USA, AF36, pro-
duces CPA. It is possible to select 
for strains of A. flavus that produce 
neither aflatoxin nor CPA (King et 
al., 2011). Efforts need to be made 
to minimize or eliminate CPA pro-
duction in biological control strains 
before use (Abbas et al., 2011; King 
et al., 2011).

Research needs

The use of atoxigenic strains to 
help manage aflatoxin in maize 
and groundnuts in Africa, and other 
parts of the world, will require an 
investment to optimize, adapt, and 
deploy the technology in a sustain-
able manner. 

Given the large number of ex-
ploratory investigations in Africa, 
studies are needed to evaluate the 
impact of the low rate of genetic re-
combination, which will then inform 
the deployment of the technology in 
diverse settings.

Sorting

In developed countries, sorting and 
grain cleaning techniques are re-
quired to reduce mycotoxin con-
tamination, notably in grains con-
taminated by ergot and in nuts. Ergot 
sclerotia are removed by specific 
gravity seed cleaning equipment, a 

practice that has been in place for a 
long time. In groundnuts, after basic 
clean-up of the crop by commercial 
farmers, high-capacity electronic op-
tical sorters are used to remove nuts 
contaminated by aflatoxin (Whitaker 
et al., 2005). For maize, normal grain 
cleaners reduce aflatoxin and fu-
monisin by 50–60% (Malone et al., 
1998; Pacin and Resnik, 2012), far 
less than the reduction from hand 
sorting (Brekke et al., 1975).

Soon after the discovery of af-
latoxin in 1961, sorting emerged as 
a regular and effective practice to 
improve safety for groundnuts. The 
need for efficient ways to remove af-
latoxin-contaminated nuts prompted 
experiments on the concentrations 
of aflatoxin in kernels from shells 
that were not visibly mouldy. This 
revealed that visual sorting was an 
efficient way to segregate more- ver-
sus less-contaminated kernels in the 
laboratory. However, parts of some 
nuts that appeared sound con-
tained substantial levels of aflatoxin 
(Cucullu et al., 1966). Licensed Unit-
ed States federal inspectors were 
given 4 hours of training on the visu-
al clues of potential damage by As-
pergillus in kernels in graded sam-
ples of a 1-ton lot of nuts. In the best 
grade of groundnuts, misclassifica-
tion occurred, which the authors as-
cribed to mostly false-positives, with 
some false-negatives and sampling 
error (Dickens and Welty, 1969).

By 1968, another step was intro-
duced into the United States inspec-
tion system: examination by the in-
spectors of the damaged kernels 
for Aspergillus. After training, each 
inspector was given a folder with 
two sets of coloured photographs 
that showed what to look for and 
what not to look for. Before the de-
velopment of the current methods 
of inspection, this low-technology 
approach was proven useful (Gold-
blatt, 1973). Whitaker et al. (1998) 
demonstrated that visual sorting 
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of groundnuts provided a practi-
cal first-action regulatory method. 
They found that sound mature ker-
nels and sound half kernels con-
tained about 7% of the aflatoxin, 
with the damaged kernels con-
taining the rest. Studies on grains 
contaminated with Fusarium tox-
ins indicate that these strategies 
work best where there is ongoing 
training (Desjardins et al., 2000; 
van der Westhuizen et al., 2010). 
A study in the Philippines found 
that manual sorting reduced afla-
toxin concentrations in lots of raw 
groundnuts from 300 ng/g to less 
than 15 ng/g (Galvez et al., 2003). 
Research conducted in Kenya (and 
Haiti) demonstrated that manual 
sorting of groundnuts purchased at 
local markets could reduce lot afla-
toxin concentrations by about 98% 
(Filbert and Brown, 2012).

In the case of maize in Africa, 
manual sorting is moderately effec-
tive at the village level for segregat-
ing kernel lots for decreased con-
centrations of aflatoxin. Removing 
visibly mouldy, insect-damaged, 
and broken grains by hand reduced 
aflatoxin concentrations by 40%, 
based on reports from a study in Be-
nin (Fandohan et al., 2005). Stud-
ies in South Africa and the United 
Republic of Tanzania have demon-
strated that hand sorting of maize 
kernels by local farmers by remov-
ing the visibly infected or dam-
aged kernels reduced fumonisin 
concentrations by 20% (Kimanya 
et al., 2009; van der Westhuizen et 
al., 2010).

The willingness to hand sort 
grains and nuts has been shown 
to depend on the available sup-
ply (Kimanya et al., 2008; van der  
Westhuizen et al., 2010; and ref-
erences cited therein). A study in 
Ghana found that household income 
and agricultural training increased 
the quality of the nuts consumed 
(Adu-Gyamfi, 2013). In South Africa, 

the effectiveness of hand sort-
ing on fumonisin reductions has 
been documented by biomarkers  
(van der Westhuizen et al., 2011).

In developed countries, sorting 
of contaminated grains is the pri-
mary tool used to reduce mycotox-
in contamination in grains and nuts 
after harvest and can be effective 
at all scales of production.

Research needs

There is a need to adapt commer-
cial optical sorting equipment for 
groundnuts for the African value 
chain for both large and small 
operations.

Targeted training in manual sort-
ing for rural women would appear to 
be a good investment. In Africa, food 
security is the major barrier to imple-
mentation of sorting (Fandohan et 
al., 2008). Safe alternative uses for 
rejected lots need further research 
(e.g. Filbert and Brown, 2012).

Nixtamalization

In Mexico and Central and South 
America, nixtamalization has been 
the usual practice for millennia. Hy-
drolysis of fumonisin during com-
mercial production of masa virtually 
eliminates fumonisin. Masa is made 
by boiling maize meal with the ad-
dition of lime, which is then washed 
out. The ratio of maize to lime to wa-
ter used and the boiling, soaking, 
and rinsing practices vary (De La 
Campa et al., 2004).

In the USA, fumonisin concen-
tration is low in commercial tortillas 
from major companies (Voss et al., 
2001). In contrast, in the USA, masa 
products from artisanal production 
facilities often contain some fu-
monisin (De La Campa et al., 2004; 
Dvorak et al., 2008). Where there is 
sufficient washing of the lime-treated 
product in the traditional process be-
fore consumption, concentrations of 

fumonisin and aflatoxin are lowered 
(De Arriola et al., 1988; De La Campa 
et al., 2004; Méndez-Albores et al., 
2004; Guzmán-de-Peña, 2010). In 
Latin America, variability in the pro-
cess means that there can be resid-
ual parent fumonisin in the tortillas 
(e.g. Dombrink-Kurtzman and Dvor-
ak, 1999; Meredith et al., 1999) that 
leads to fumonisin exposure (Gong 
et al., 2008a).

Research needs

In Latin America, nixtamalization 
has been shown to reduce exposure 
to aflatoxin and fumonisin. A knowl-
edge translation package based on 
factors known to reduce fumonisin 
in the residual masa (De La Campa 
et al., 2004) would be beneficial.

Post-harvest storage 
intervention strategies 
to reduce aflatoxin and 
fumonisin exposure

Mycotoxin contamination of crops 
can occur in the pre- and post-
harvest agricultural system due to 
inadequate agricultural practices. 
Fungal growth and toxin production 
can occur in the field (e.g. fumoni-
sin, aflatoxin), in storage (aflatoxin), 
or in both. High humidity (> 85%), 
high temperatures (> 25 °C), insect 
and rodent activity, improper drying 
of crops, and water infiltration in the 
storage structure will result in the 
growth of A. flavus and Aspergillus 
parasiticus and aflatoxin accumula-
tion (Adegoke and Letuma, 2013).

Most developing countries are 
located in the world’s tropical zones 
and are subjected to monsoons 
and high temperature and humid-
ity levels, which contribute to large 
post-harvest crop losses. Inade-
quate storage practices account for  
20–50% of these losses. Despite 
being a major United Nations priority 
since 1946 (Schulten, 1982), such 
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losses remain a global problem, 
increasing the risk of food insecu-
rity (food availability, hunger, and 
nutritional value) and poverty (Hell 
et al., 2008; Jayas, 2012; Kimatu 
et al., 2012; Gitonga et al., 2013; 
Guillou and Matheron, 2014). The 
double burden of both chronic ex-
posure to mycotoxins and food in-
sufficiency increases both mortality 
and morbidity, especially in chil-
dren (Bryden, 2007; IARC, 2012). 
Adequate post-harvest measures 
that are practical, economic, and 
culturally acceptable will therefore 
address food safety and security 
and improve public health.

In subtropical climates, maize in 
the field is typically infected by A. 
flavus, and unless it is dried very 
quickly, aflatoxin concentrations in-
crease after harvest (IARC, 2012). 
The stored post-harvest crop eco-
system is therefore an integral part 
of mycotoxin prevention strategies 
(Marín et al., 2004; Choudhary and 
Kumari, 2010; Chulze, 2010). Most 
of the conditions associated with 
the post-harvest period can be 
controlled, unlike those affecting 
the pre-harvest phase. Strategies 
to reduce mycotoxin levels during 
storage mainly consist of: adequate 
drying of crops before storage;  
using clean, dry, and enclosed stor-
age facilities; proper water drainage; 
well-aerated stores; and eliminating 
insect activity and other pests such 
as rodents and birds (Lanyasunya et 
al., 2005; Turner et al., 2005; Hell et 
al., 2008).

Before storage, harvested field 
crops should be dried as soon as 
possible to reduce fungal growth; 
safe moisture levels recommend-
ed for cereals are 10–13% and 
for oilseeds are 7–8% (Hell et al., 
2008). Common storage practices 
for crops include: on the field; on 
the floor in homes; on top of or 
under the roof of houses; in jute 
or polypropylene bags, wire cribs, 

pits, and metal bins; and in coni-
cal structures or other constructed 
structures, with or without roofing, 
made from wood, bamboo, thatch, 
or mud (Hell et al., 2010; Narrod, 
2013; Abass et al., 2014).

Evidence-based post-harvest 
storage intervention strategies 
among subsistence farmers are 
limited. Turner et al. (2005) con-
ducted a field study among ground-
nut farmers in West Africa (600 vol-
unteers from 20 villages) to reduce 
aflatoxin exposure by implementing 
a specific intervention package, 
and to assess the impact of the in-
tervention by monitoring aflatoxin 
B1 (AFB1) levels in groundnuts and 
blood aflatoxin–albumin adducts 
(AF–alb) as a measure of exposure. 
The intervention package included 
hand sorting of kernels (with re-
moval of damaged kernels), drying 
kernels on natural fibre mats, esti-
mating the completeness of a sun-
drying period, storing kernels in 
natural fibre bags, supplying wood-
en pallets to store the bags on, and 
using insecticide (acetilite). Signifi-
cant reductions in both AF–alb in 
blood (58% reduction) and ground-
nut contamination levels (70% re-
duction) were observed. This is the 
only study of its kind that showed 
the reduction of aflatoxin exposure 
in the groundnut-consuming popu-
lation (Turner et al., 2005).

In Africa, maize is matured un-
der dry conditions and is commonly 
left in the field to dry on the stalk, 
whereas in South-East and East 
Asia, maize is sometimes harvest-
ed wet and piled in stacks and left 
on the field to dry for a period of 
time (Pitt et al., 2013). Maize may 
also be shelled, and this, together 
with drying practices, increases  
aflatoxin levels. However, crops 
dried adequately away from the field 
and off the ground are less suscep-
tible to insect damage and fungal 
growth.

Sun-drying of maize and ground-
nuts is common practice in Africa 
and, together with the use of plat-
forms, has been shown to reduce 
the growth of toxigenic fungi such as 
Aspergillus, Fusarium, and Penicil-
lium (Hell et al., 2008). In Ghana, the 
method of inverted windrowing of 
groundnut pods after harvest ensures 
exposure to direct sunlight and circu-
lating air. This cost-effective method 
dries the pods rapidly and sufficiently 
to ensure reduction of aflatoxin lev-
els (Amoako-Attah et al., 2007). For 
groundnuts, drying on raised surfaces 
or on mats to a kernel moisture content 
of 8% is required to reduce the risk of 
aflatoxin contamination (Waliyar et al., 
2013).

Kaaya and Kyamuhangire (2010) 
investigated the effect of biomass-
heated natural convection dryers 
on maize quality during storage in 
Uganda. During that study, insect 
damage, mould infection, aflatoxin 
contamination, and the maize ger-
mination potential were determined. 
The use of these dryers proved to 
be protective against insect dam-
age, reduced mould and aflatoxin 
contamination, and had no effect 
on the grain germination potential. 
They also were shown to be highly 
effective in eliminating crop loss due 
to insect damage. Additional ben-
efits included the reduced need for 
insecticides to protect the crop, the 
extension of crop storage duration 
by 1.8–2.4 months, the improve-
ment of availability of food by more 
than 1 month, and an increase in 
jobs and income.

A suggested replacement for 
sun-drying is the use of solar dry-
ers, because they dry crops faster 
and more efficiently and provide 
a controlled environment that of-
fers improved sanitation (Sharma 
et al., 2009; Ogunkoya et al., 2011). 
The lack of success of using solar-
based drying among rural commer-
cial farmers has been attributed to 



Chapter 7. Intervention strategies to reduce human exposure to aflatoxins and fumonisins 39

the cost, complicated operational 
procedures, and the reluctance to 
change from traditional methods 
(Ekechukwu and Norton, 1999). 
Small-scale farmers require so-
lar dryers that are more affordable 
to purchase or construct and need 
little maintenance (Ogunkoya et al., 
2011). Of the solar drying technolo-
gies available, including the active 
(forced-convection) solar dryers 
and the passive (natural-circulation) 
types, the use of a ventilated green-
house dryer has been suggested for 
rural small-scale farmers, due to its 
low cost, simplicity, and on-site con-
struction and operation (Ekechukwu 
and Norton, 1999).

The use of hermetically sealed 
storage bags, such as those of the 
Purdue Improved Crop Storage proj-
ect, is apparently effective for insect 
control, increasing insect mortality 
by 95–100% in stored maize (Baoua 
et al., 2014; Hell et al., 2014). The 
efficiency of hermetic technologies 
to prevent fungal growth and con-
sequent mycotoxin contamination 
seems to be dependent on the type 
and specific characteristics of the 
crop. Storage of groundnuts in Su-
per Grain Bags (bags made of mul-
tilayer polyethylene that have a two-
track zipper and are sealed using a 
zipper slider) reduced the growth of 
aflatoxin-producing fungi during an 
experimental study (Navarro et al., 
2012). Mutegi et al. (2013) showed 
that groundnuts stored in polyeth-
ylene bags were 7–13% more con-
taminated than samples stored in 
polypropylene and jute bags. Jute 
bags are considered more feasible 
compared with polyethylene and 
polypropylene only if crops are prop-
erly dried before storage; polyethyl-
ene and polypropylene bags are 
poorly aerated and do not absorb 
moisture. The use of natural fibre 
jute bags has been suggested to be 
more suitable to maintain crop qual-
ity (Turner et al., 2005).

Research needs

Strategies to improve post-harvest 
storage of crops should be an urgent 
research priority (Anankware et al., 
2012). Ideally, technologies should 
be economically feasible, require 
low labour intensity, be practical 
and sustainable, reduce the need to 
use chemicals, and be convenient, 
widely available, and easy to trans-
port (Hell et al., 2010; Baoua et al., 
2014). The interventions should also 
be developed for both rural small-
scale and commercial farmers. In 
sub-Saharan Africa, 80% of farms 
are smallholder, mostly subsistence 
farms (Mboya and Kolanisi, 2014), 
and a distinction should be made as 
to what technologies are feasible for 
commercial versus small-scale farm-
ers in rural areas.

The cultural acceptability of a pro-
posed intervention in the different ag-
ricultural systems is also important. 
Therefore, post-harvest strategies in 
developing countries should be com-
prehensively field-tested and validat-
ed to assess their efficacy, economic 
feasibility, cultural acceptability, and 
sustainability (Strosnider et al., 2006; 
De Groote et al., 2013; Jones et al., 
2014). To ensure compliance, it will 
be important to monitor large-scale 
implementation.

Apart from the lack of feasible 
and inexpensive strategies, other 
obstacles to improving post-har-
vest storage of crops include the 
absence of governmental commit-
ment and the shortage of trained 
personnel, such as agricultural ex-
tension workers (Hell et al., 2010). 
Establishing strategies to safeguard 
crops during storage will inevitably 
require cooperation and communi-
cation between governments, re-
search entities, nongovernmental 
organizations, other stakeholders 
(market agencies, farmers’ and 
consumer groups), manufacturers, 
and the farmers.

In Africa, farmers’ awareness of 
the health risks associated with af-
latoxin and how to reduce exposure 
is influenced by their socioeconomic 
status, education, farm size, exten-
sion participation, market orienta-
tion, economic motivation, and per-
ceptions (Kumar and Popat, 2010; 
Adegoke and Letuma, 2013). The role 
of women in rural agro-ecological 
zones in developing countries should 
also be considered, because they play 
an important role as mothers, educa-
tors, and businesswomen managing 
household nutrition, farming, and the 
selling of smallholder crops. Women 
in certain areas of Ghana and Nigeria 
were able to produce less maize com-
pared with men. This was due to a 
lack of access to fertile soil and new 
technologies or innovations (Udoh 
et al., 2000; Adu-Gyamfi, 2013). In 
Ghana and Nigeria, women have 
less influence on decision-making 
compared with men (Ogunlela and 
Mukhtar, 2009; Adu-Gyamfi, 2013). 
In South Africa, the situation is dif-
ferent; women head 60% of the ru-
ral households in the Eastern Cape 
Province and manage the farms 
(Burger et al., 2010). More research 
on gender and mycotoxin manage-
ment is needed to properly develop 
education campaigns and ensure 
equitable access to information by 
both men and women.

Post-harvest interventions to re-
duce mycotoxin exposure should 
include education programmes and 
awareness campaigns that will fa-
cilitate best practices. Working in 
rural South Africa, Mboya and Ko-
lanisi (2014) (260 smallholder farm 
households) found that few people 
understood the health risks asso-
ciated with mycotoxins. This was 
also the case in a much larger study 
(sample size, 2400) in Benin, Gha-
na, and Togo (James et al., 2007). 
Sustainability of appropriate agri-
cultural practices will be more effec-
tive through continuous campaigns 
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(Strosnider et al., 2006; Jolly et al., 
2009). The emphasis should be on 
crop quality rather than on produc-
tivity in domestic markets (Kumar 
and Popat, 2010).

The following is a summary of 
recommended procedures using 
evidence-based, culturally accept-
able, and validated prevention 
strategies.
• Develop knowledge translation 

modules in partnership with farm- 
ers, area agricultural exten-
sion workers, traditional leaders, 
church groups, health workers, 
and civil society, with a focus 
on women.

• Be prepared to implement preven-
tion strategies on a larger scale.

• Use recommended procedures in 
chronic-exposure situations as an 
ongoing intervention package.

• Apply as a multifactorial interven-
tion package to include hand sort-
ing, rapid and proper (elevated) 
drying, proper storage, elevation 
of stored crops, and insect control.

• Consider that designs for solar or 
biomass dryers and storage struc-
tures preferably built from locally 
available materials are urgently 
needed.

Interventions useful
in emergencies

A distressing number of cases of 
acute aflatoxicosis have occurred, 
notably in the past decade. Those 
who are most likely to consume 
foods contaminated with aflatox-
ins suffer the most severe effects, 
including disease and death af-
ter acute exposure (Lewis et al., 
2005). Thus, feasible interventions 
and therapies to diminish human 
and animal exposure to aflatox-
ins during aflatoxin outbreaks are  
imperative.

Numerous strategies to seques-
ter aflatoxins in the gastrointestinal 
tract and reduce their bioavailability 

have been evaluated for their po-
tential as practical, cost-effective, 
and sustainable solutions to the af-
latoxin problem. Aside from avoid-
ing ingestion of contaminated food, 
none of these primary intervention 
strategies provides complete pro-
tection. However, a refined calcium 
montmorillonite clay (NovaSil [NS]) 
and chlorophyllin have been widely 
studied in animals and humans for 
safety and efficacy, with promis-
ing results. Similar research is un-
der way to evaluate the efficacy 
of other enterosorption strategies, 
including various bacteria and in-
digestible carbohydrates such as 
glucans, glucomannans, cellulose, 
and peptidoglycans.

Aflatoxin enterosorbents

Studies describing materials that 
can tightly adsorb aflatoxins onto 
internal and/or external surfaces, 
causing a reduction in toxin up-
take and bioavailability, have been 
recently reviewed (Kensler et al., 
2013; Miller et al., 2014). The tech-
nical feasibility, costs, and efficacy 
of various mitigation strategies (in-
cluding the use of enterosorption 
and trapping agents) have also 
been reported (Khlangwiset and 
Wu, 2010). It has been suggested 
that inclusion of toxin enterosor-
bents in the diet can decrease 
morbidity and mortality during 
outbreaks of acute aflatoxicosis. 
The most common materials used 
as toxin enterosorbents and trap-
ping agents are discussed briefly 
below.

Chlorophyll/chlorophyllin

Chlorophyll and chlorophyllin are 
naturally occurring constituents 
of the human diet that have been 
shown to be effective anticarcino-
gens in several animal models 
(Dashwood et al., 1998). They 

are hypothesized to act as inter-
ceptor molecules by trapping car-
cinogens, such as AFB1, thereby 
diminishing bioavailability by im-
peding their absorption (Breinholt  
et al., 1995).

In a 4-month clinical trial in Chi-
na, ingestion of 100 mg of chloro-
phyllin at each meal led to an over-
all 55% reduction in median urinary 
levels of aflatoxin–N7-guanine ad- 
ducts compared with placebo (Eg-
ner et al., 2001). In a crossover 
study among four human volun-
teers in the USA, data suggested 
that chlorophyll or chlorophyllin 
consumption may limit the bioavail-
ability of aflatoxins, as shown in an-
imals (Jubert et al., 2009). Prophy-
lactic therapy with chlorophyllin or 
supplementation of diets with foods 
rich in chlorophylls may represent 
a practical measure to reduce the 
likelihood of developing aflatoxico-
sis (Kensler et al., 2013).

Clays

The use of clay-based products 
as enterosorbents for aflatoxins is 
a frequent strategy to reduce afla-
toxin exposure in animals. Diocta-
hedral smectite clays (especially 
montmorillonite) are the common 
sorbents used for this purpose. Ear-
lier studies showed that inclusion 
of a calcium montmorillonite clay 
(NS) in animal feed reduced the 
adverse effects associated with af-
latoxin exposure in multiple animal 
species and decreased the level 
of aflatoxin M1 (AFM1) in milk from 
lactating dairy cows and goats 
(Phillips et al., 2008). Equilibrium 
adsorption isotherms, molecular 
modelling, and in vivo studies have 
been used to demonstrate that NS 
binds AFB1 and fumonisin B1 in 
the gastrointestinal tract, thereby 
reducing systemic bioavailability 
(Phillips et al., 2008; Robinson et 
al., 2012).
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Initial human trials in Ghana and 
in Texas (USA) showed no adverse 
health effects in humans (Phillips 
et al., 2008; Johnson et al., 2009; 
Mitchell et al., 2013). Based on 
animal and human studies, NS clay 
does not significantly alter the lev-
els of vitamins and minerals. Over-
all, use of NS clay during outbreaks 
of acute aflatoxicosis appears to be 
a safe and practical strategy for vul-
nerable populations at high risk for 
exposure (Mitchell et al., 2014).

Other aflatoxin-sequestering ma- 
terials that have been investigated 
include lactic acid bacteria (El-Ne-
zami et al., 2000, 2006; Hernan-
dez-Mendoza et al., 2009; Dalié et 
al., 2010; Pizzolitto et al., 2011) and 
yeast (Baptista et al., 2002; Diaz et 
al., 2004; Stroud, 2006; Kutz et al., 
2009; Pizzolitto et al., 2011; Fruhauf 
et al., 2012).

Research needs

The young of all species are the 
most vulnerable to aflatoxins; thus, 
children are the most likely to suf-
fer the consequences of aflatoxin 
outbreaks. The trials reported to 
date have been in adults, and there 
is a knowledge gap in emergency 
strategies for protecting infants and 
children.

Further studies are warranted to 
assess the effects of aflatoxin dose 
and duration of exposure on effi-
cacy and the safety of NS clay and 
chlorophyllin in the vulnerable, in-
cluding malnourished infants, chil-
dren, and pregnant women.

Other research needs include: 
determining the effects of mixtures 
of NS, chlorophyllin, and other 
enterosorbents; assessing the ef-
fectiveness of combinations of af-
latoxin enterosorbents and chemo-
protectants; identifying sustainable 
and effective delivery strategies to 
treat acute aflatoxicosis; and con-
ducting phased clinical trials.

Chemoprevention studies

Dithiolethiones (oltipraz)

Oltipraz, a substituted 1,2-dithiole-
3-thione, was originally developed 
by the pharmaceutical industry as a 
possible treatment for schistosomia-
sis and was extensively evaluated 
in clinical trials in the early 1980s. 
Subsequent studies demonstrated 
that oltipraz and some structurally 
related 1,2-dithiole-3-thiones were 
potent inducers of enzymes asso-
ciated with the maintenance of re-
duced glutathione pools, as well as 
enzymes important to carcinogen 
detoxification, in multiple tissues of 
rats and mice (Ansher et al., 1983, 
1986).

Aflatoxin biomarkers were used as 
intermediate end-points in a phase 
IIa chemoprevention trial of oltipraz 
in Qidong, China (Kensler et al., 
1998; Wang et al., 1999). This was 
a placebo-controlled, double-blind 
study in which participants were ran-
domized to receive placebo, 125 mg 
of oltipraz daily, or 500 mg of oltipraz 
weekly. In participants receiving the 
500 mg weekly dose, urinary AFM1 
levels were reduced by 51% com-
pared with the placebo group. Me-
dian levels of aflatoxin–mercapturic 
acid (a glutathione conjugate de-
rivative) were elevated 6-fold in the 
125 mg group but were unchanged 
in the 500 mg group. Increased afla-
toxin–mercapturic acid levels reflect 
induction of aflatoxin conjugation 
through the actions of glutathione 
S-transferases. The apparent lack 
of induction in the 500 mg group 
probably reflects masking caused 
by diminished aflatoxin-8,9-epoxide 
formation for conjugation through 
the inhibition of CYP1A2 seen in 
this group. This initial study demon-
strated for the first time that aflatoxin 
biomarkers could be modulated in 
humans in a manner that would pre-
dict decreased disease risk.

Sulforaphane

Although the oltipraz clinical trial 
demonstrated the proof of principle 
for increasing pathways leading to 
aflatoxin detoxification in humans, 
the practicality of using a drug-based 
method for prevention in develop-
ing countries is limited. Fortunately, 
oltipraz is not the only agent that af-
fects enzyme changes through the 
Nrf2-Keap1 pathway. Many foods 
have high levels of these enzyme 
inducers (Talalay and Fahey, 2001; 
Fahey and Kensler, 2007).

A beverage formed from hot 
water infusions of 3-day-old broccoli 
sprouts, containing defined concen-
trations of glucosinolates as a stable 
precursor of the anticarcinogen sul-
foraphane, was evaluated for its abil-
ity to alter the disposition of aflatoxin 
(Kensler et al., 2005). Sulforaphane 
has been extensively examined for its 
chemopreventive properties and is a 
potent activator of the Nrf2-Keap1 
pathway, leading to increased ex-
pression of carcinogen-detoxify-
ing enzymes (Fahey et al., 2002; 
Dinkova-Kostova et al., 2007). In a 
study in Qidong, China, 200 healthy 
adults drank infusions containing ei-
ther 400 μmol or less than 3 μmol of 
glucoraphanin nightly for 2 weeks. 
Urinary levels of aflatoxin–N7-gua-
nine adducts were similar between 
the two intervention arms. However, 
the measurement of urinary levels 
of dithiocarbamates (sulforaphane 
metabolites) indicated striking in-
terindividual differences in bioavail-
ability. This outcome may reflect 
individual differences in the rates of 
hydrolysis of glucoraphanin to sul-
foraphane by the intestinal microflora 
of the study participants. Account-
ing for this variability, a significant 
inverse association was observed 
for excretion of dithiocarbamates 
and aflatoxin–N7-guanine adducts in 
individuals receiving broccoli-sprout 
glucosinolates (Kensler et al., 2005).
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This preliminary study illus-
trates the potential use of an in-
expensive, easily implemented, 
food-based method for second-
ary prevention in a population at 
high risk of aflatoxin exposure. 
A follow-up intervention seek-
ing to minimize the interindividual 
variability in the pharmacokinetics 
of the glucoraphanin precursor is 
currently in progress.

Green tea polyphenols

Many studies have demonstrated 
that green tea polyphenols (GTPs) 
inhibit various chemically induced 
cancers in experimental animals 
(Moyers and Kumar, 2004; Yang et 
al., 2006). Qin et al. (1997) studied 
the effects of GTPs in drinking-
water for 2 or 4 weeks to protect 
against the development of AFB1- 

induced hepatocarcinogenesis in 
the rat. The data on GTPs in ex-
perimental animals provided the 
impetus to translate this strategy 
to human clinical trials. In an initial 
study in an aflatoxin-exposed high-
risk group in Guangxi, China, the 
effects of GTPs were assessed in 
urine samples collected from a ran-
domized, double-blinded, placebo-
controlled phase IIa chemopre-
vention trial (Luo et al., 2006). All 
participants tested positive for AF–
alb and took GTPs capsules daily 
at a dose of 500 mg or 1000 mg, 
or a placebo, for 3 months. Analy-
ses were performed on blood and 
urine samples collected during this 
clinical trial to evaluate the efficacy 
of GTPs in modulating aflatoxin 
biomarkers; reductions in AF–alb 
and urinary AFM1 levels were ob-
served (Tang et al., 2008). After the 

3-month trial, both of the GTPs inter-
vention groups were found to have 
reduced AF–alb levels compared 
with the non-intervention controls.  

Research needs

This research has established that 
chemoprevention with the above-
mentioned agents is effective in 
relevant animal models and that 
the mechanism applies in humans. 
Similar plant polyphenols and sul-
foraphanes occur in several plant 
species found in developing coun-
tries that are affected by aflatoxin. 
Research is needed to determine 
which locally grown and consumed 
plants contain sufficient levels of 
these naturally occurring chemopre-
ventive agents to induce protection 
from aflatoxin exposure, and to con-
duct experimental trials.
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